中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

已知函數f(x)=x3+x2+ax+b,g(x)=x3+x2+ 1nx+b,(a,b為常數).
(1)若g(x)在x=l處的切線方程為y=kx-5(k為常數),求b的值;
(2)設函數f(x)的導函數為f’(x),若存在唯一的實數x0,使得f(x0)=x0與f′(x0)=0同時成立,求實數b的取值范圍;
(3)令F(x)=f(x)-g(x),若函數F(x)存在極值,且所有極值之和大于5+1n2,求a的取值范圍.

(1);(2);(3)

解析試題分析:(1)根據導數的幾何意義,先求 ,利用,然后將代入,求出`,此點也在函數f(x)上,代入,即可求出;
(2)根據,消去,得到關于的三次方程,,此方程有唯一解,令,求出,利用導數求出極值點,以及兩側的單調性,從而分析圖像,得到的取值范圍;
(3),因為存在極值,所以上有根即方程上有根.得到根與系數的關系,代入極值,得到的取值范圍.
試題解析:(1)∵ 所以直線,當時,,將(1,6)代入,得.       4分
(2) ,由題意知消去
有唯一解.
,則,       6分
所以在區間上是增函數,在上是減函數,
,故實數的取值范圍是.   9分
(3)
因為存在極值,所以上有根即方程上有根.        10分
記方程的兩根為由韋達定理,所以方程的根必為兩不等正根.         12分

 所以滿足方程判別式大于零
故所求取值范圍為            14分
考點:1.導數的幾何意義;2.利用導數求函數極值,單調性;3.導數解決函數的綜合問題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知函數,其中為自然對數的底數.
(1)設是函數的導函數,求函數在區間上的最小值;
(2)若,函數在區間內有零點,求的取值范圍。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數 (R).
(1)當時,求函數的極值;
(2)若函數的圖象與軸有且只有一個交點,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數為實數,),,⑴若,且函數的值域為,求的表達式;
⑵設,且函數為偶函數,判斷是否大0?
⑶設,當時,證明:對任意實數(其中的導函數) .

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知是函數的一個極值點,其中
(1)的關系式;
(2)求的單調區間;
(3)當時,函數的圖象上任意一點處的切線的斜率恒大于,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知二次函數滿足:①在時有極值;②圖像過點,且在該點處的切線與直線平行.
(1)求的解析式;
(2)求函數的單調遞增區間.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數處取得極值,求函數以及的極大值和極小值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設函數.
(1)求的單調區間和極值;
(2)若關于的方程有3個不同實根,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

已知函數的導數為,則=          

查看答案和解析>>

同步練習冊答案