中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

已知函數 (a>0,且a≠1),=.
(1)函數的圖象恒過定點A,求A點坐標;
(2)若函數的圖像過點(2,),證明:函數(1,2)上有唯一的零點.

(1)
(2)先利用已知條件求出a,在利用單調性和零點存在定理即可證明

解析試題分析:(1)因為對數函數恒過頂點(1,0),
所以令所以過頂點                                 5分
(2)∵  
∴代入計算可得a=2                                                         7分

上的增函數和減函數

                                      10分
又(1,2)
上至多有一個零點.                                            12分


∴函數(1,2)                                  16分
考點:本小題主要考查對數函數過定點和函數的單調性以及零點存在定理的應用.
點評:指數函數和對數函數都過定點,這條性質要靈活應用;利用函數的零點存在定理時要注意它只能判斷有零點,不能判斷零點的個數.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知函數在區間上的值域為
(1)求的值;
(2)若關于的函數在區間上為單調函數,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
①當時,求函數在上的最大值和最小值;
②討論函數的單調性;
③若函數處取得極值,不等式恒成立,求實數的取值范圍。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(1)若為定義域上的單調函數,求實數m的取值范圍;
(2)當m=-1時,求函數的最大值;
(3)當時,證明:

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數 .

(1)畫出 a =" 0" 時函數的圖象;
(2)求函數 的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數.
(1)若曲線在點處的切線與直線垂直,求實數的值.
(2)若,求的最小值
(3)在(Ⅱ)上求證:.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數(a>1).
(1)判斷函數f (x)的奇偶性;
(2)求f (x)的值域;
(3)證明f (x)在(-∞,+∞)上是增函數.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

證明函數f(x)=x+在(0,1)上是減函數.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分12分)
已知函數f(x)=
(1)求函數f(x)的定義域;
(2)判斷函數f(x)的奇偶性,并證明;
(3)判斷函數f(x)在定義域上的單調性,并用定義證明。

查看答案和解析>>

同步練習冊答案