中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
函數
(1)當時,對任意R,存在R,使,求實數的取值范圍;
(2)若對任意恒成立,求實數的取值范圍.
(1)的取值范圍是;(2)

試題分析:(1)本問題等價于,                            1分
,                                       2分
所以上遞減,在上遞增,                      3分
所以                                     4分
,所以,所以的取值范圍是; 5分
(2)
,  6分
所以遞增,所以,              7分
①當,即時,遞增,所以
9分
②當,即時,存在正數,滿足
于是遞減,在遞增,                     10分
所以,11分
,所以遞減,    12分
,所以,                       13分
,因為上遞增,所以,    14分
由①②知的取值范圍是.                       15分
點評:難題,利用導數研究函數的單調性、極值,是導數應用的基本問題,主要依據“在給定區間,導函數值非負,函數為增函數;導函數值非正,函數為減函數”。確定函數的極值,遵循“求導數,求駐點,研究單調性,求極值”。不等式恒成立問題,往往通過構造函數,研究函數的最值,使問題得到解決。本題對a-2的取值情況進行討論,易于出錯。
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

已知函數.
(Ⅰ)當時,討論函數在[上的單調性;
(Ⅱ)如果是函數的兩個零點,為函數的導數,證明:.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數 
(Ⅰ)若處的切線垂直于直線,求該點的切線方程,并求此時函數的單調區間;
(Ⅱ)若對任意的恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數.
(Ⅰ)若時,,求的最小值;
(Ⅱ)設數列的通項,證明:.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

若函數在區間,0)內單調遞增,則取值范圍是(   )
A.[,1)B.[,1)C.D.(1,)

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數
(Ⅰ)當時,判斷函數是否有極值;
(Ⅱ)若時,總是區間上的增函數,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

已知函數y=f(x)(x∈(0,2))的圖象是如圖所示的圓C的一段圓弧.現給出如下命題:

;②;③為減函數;④若,則a+b=2.
其中所有正確命題的序號為    

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數(其中).
(1)求的單調區間;
(2)若函數在區間上為增函數,求的取值范圍;
(3)設函數,當時,若存在,對任意的,總有成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知的導函數,則得圖像是(   )

查看答案和解析>>

同步練習冊答案