如圖,在五棱錐P—ABCDE中,PA⊥平面ABCDE,AB∥CD,AC∥ED,AE∥BC,
ABC=
,AB=2
,BC=2AE=4,
是等腰三角形.![]()
(Ⅰ)求證:平面PCD⊥平面PAC;
(Ⅱ)求四棱錐P—ACDE的體積.
(Ⅰ)先證
(Ⅱ)![]()
解析試題分析:(Ⅰ)證明:因為
ABC=45°,AB=2
,BC=4,所以在
中,由余弦定理得:
,解得
,
所以
,即
,又PA⊥平面ABCDE,所以PA⊥
,
又PA
,所以
,又AB∥CD,所以
,又因為
,所以平面PCD⊥平面PAC;
(Ⅱ)由(Ⅰ)知
,所以
,又AC∥ED,所以四邊形ACDE是直角梯形,又容易求得
,AC=
,所以四邊形ACDE的面積為
,所以四棱錐P—ACDE的體積為
=
.
考點:平面與平面垂直的判定;體積;空間中直線與平面之間的位置關系;直線與平面所成的角.
點評:本題主要考查空間中的基本關系,考查線面垂直、面面垂直的判定以及線面角和幾何體體積的計算,考查識圖能力、空間想象能力和邏輯推理能力.
科目:高中數學 來源: 題型:解答題
如圖,在四棱柱
中,側棱
底面
,![]()
![]()
(Ⅰ)求證:
平面![]()
(Ⅱ)若直線
與平面
所成角的正弦值為
,求
的值
(Ⅲ)現將與四棱柱
形狀和大小完全相同的兩個四棱柱拼成一個新的四棱柱,規定:若拼成的新四棱柱形狀和大小完全相同,則視為同一種拼接方案,問共有幾種不同的拼接方案?在這些拼接成的新四棱柱中,記其中最小的表面積為
,寫出
的解析式。(直接寫出答案,不必說明理由)
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
正四棱錐
中,
,點M,N分別在PA,BD上,且
.![]()
(Ⅰ)求異面直線MN與AD所成角;
(Ⅱ)求證:
∥平面PBC;
(Ⅲ)求MN與平面PAB所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,在四棱錐P-ABCD中,底面是邊長為2
的菱形,且∠BAD=120°,且PA⊥平面ABCD,PA=
,M,N分別為PB,PD的中點.![]()
![]()
(1)證明:MN∥平面ABCD;
(2) 過點A作AQ⊥PC,垂足為點Q,求二面角A-MN-Q的平面角的余弦值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com