(1)求圓心在
軸上,且與直線
相切于點(diǎn)
的圓的方程;
(2)已知圓
過(guò)點(diǎn)
,且與圓
關(guān)于直線
對(duì)稱,求圓
的方程.
(1)
(2)![]()
解析試題分析:(1)根據(jù)題意可設(shè)圓心
,所以圓心和切點(diǎn)的連線與直線
垂直,根據(jù)斜率相乘等于
,可求出圓心坐標(biāo),圓心與切點(diǎn)間的距離為半徑,即可求出圓的標(biāo)準(zhǔn)方程。(2)兩圓關(guān)于直線對(duì)稱即圓心關(guān)于直線對(duì)稱,半徑不變。即兩圓心的連線被直線
垂直平分,則可求出圓
的圓心坐標(biāo),根據(jù)兩點(diǎn)間距離求半徑。
試題解析:解:(1)根據(jù)題意可設(shè)圓心
,則
,即圓心為
,半徑
,則所求圓的方程為
. 6分
(2)設(shè)圓心
,![]()
∴
又
在圓上所以圓C的方程為
. 12分
考點(diǎn):1求圓的方程;2點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)。
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知以點(diǎn)
為圓心的圓與直線
相切,過(guò)點(diǎn)
的動(dòng)直線與圓
相交于
兩點(diǎn).
(1)求圓
的方程;
(2)當(dāng)
時(shí),求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在平面直角坐標(biāo)系xOy中,已知曲線C由圓弧C1和圓弧C2相接而成,兩相接點(diǎn)M,N均在直線x=5上.圓弧C1的圓心是坐標(biāo)原點(diǎn)O,半徑為13;圓弧C2過(guò)點(diǎn)A(29,0).![]()
(1)求圓弧C2的方程.
(2)曲線C上是否存在點(diǎn)P,滿足PA=
PO?若存在,指出有幾個(gè)這樣的點(diǎn);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在平面直角坐標(biāo)系xOy中,橢圓C:
=1(a>b>0)的離心率為
,以坐標(biāo)原點(diǎn)為圓心,橢圓C的短半軸長(zhǎng)為半徑的圓與直線x-y+2=0相切.![]()
(1)求橢圓C的方程;
(2)已知點(diǎn)P(0,1),Q(0,2),設(shè)M,N是橢圓C上關(guān)于y軸對(duì)稱的不同兩點(diǎn),直線PM與QN相交于點(diǎn)T.求證:點(diǎn)T在橢圓C上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知以點(diǎn)C
(t∈R,t≠0)為圓心的圓與x軸交于點(diǎn)O,A,與y軸交于點(diǎn)O,B,其中O為原點(diǎn).
(1)求證:△AOB的面積為定值;
(2)設(shè)直線2x+y-4=0與圓C交于點(diǎn)M,N,若|OM|=|ON|,求圓C的方程;
(3)在(2)的條件下,設(shè)P,Q分別是直線l:x+y+2=0和圓C上的動(dòng)點(diǎn),求|PB|+|PQ|的最小值及此時(shí)點(diǎn)P的坐標(biāo)..
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知點(diǎn)A(-3,0),B(3,0),動(dòng)點(diǎn)P滿足|PA|=2|PB|.
(1)若點(diǎn)P的軌跡為曲線C,求此曲線的方程;
(2)若點(diǎn)Q在直線l1:x+y+3=0上,直線l2經(jīng)過(guò)點(diǎn)Q且與曲線C只有一個(gè)公共點(diǎn)M,求|QM|的最小值.?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知圓
經(jīng)過(guò)坐標(biāo)原點(diǎn)
和點(diǎn)
,且圓心在
軸上.
(1)求圓
的方程;
(2)設(shè)直線
經(jīng)過(guò)點(diǎn)
,且
與圓
相交所得弦長(zhǎng)為
,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知圓
與圓
外切于點(diǎn)
,直線
是兩圓的外公切線,分別與兩圓相切于
兩點(diǎn),
是圓
的直徑,過(guò)
作圓
的切線,切點(diǎn)為
.![]()
(Ⅰ)求證:
三點(diǎn)共線;
(Ⅱ)求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知圓
,直線
,
。
(1)證明:不論
取什么實(shí)數(shù),直線
與圓恒交于兩點(diǎn);
(2)求直線被圓
截得的弦長(zhǎng)最小時(shí)
的方程.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com