已知圓
,直線
,
。
(1)證明:不論
取什么實數,直線
與圓恒交于兩點;
(2)求直線被圓
截得的弦長最小時
的方程.
科目:高中數學 來源: 題型:解答題
在平面直角坐標系
中,已知圓心在
軸上,半徑為
的圓
位于
軸的右側,且與
軸相切,
(Ⅰ)求圓
的方程;
(Ⅱ)若橢圓
的離心率為
,且左右焦點為
,試探究在圓
上是否存在點
,使得
為直角三角形?若存在,請指出共有幾個這樣的
點?并說明理由(不必具體求出這些點的坐標)
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知點
和圓
:
.![]()
(Ⅰ)過點
的直線
被圓
所截得的弦長為
,求直線
的方程;
(Ⅱ)試探究是否存在這樣的點
:
是圓
內部的整點(平面內橫、縱坐標均為整數的點稱為整點),且△OEM的面積
?若存在,求出點
的坐標,若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知圓A過點
,且與圓B:![]()
關于直線
對稱.
(1)求圓A的方程;
(2)若HE、HF是圓A的兩條切線,E、F是切點,求
的最小值。
(3)過平面上一點
向圓A和圓B各引一條切線,切點分別為C、D,設
,求證:平面上存在一定點M使得Q到M的距離為定值,并求出該定值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,已知半徑為
的⊙
與
軸交于
、
兩點,
為⊙
的切線,切點為
,且
在第一象限,圓心
的坐標為
,二次函數
的圖象經過
、
兩點.![]()
(1)求二次函數的解析式;
(2)求切線
的函數解析式;
(3)線段
上是否存在一點
,使得以
、
、
為頂點的三角形與
相似.若存在,請求出所有符合條件的點
的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
有一個不透明的袋子,裝有4個完全相同的小球,球上分別編有數字1,2,3,4,
(1)若逐個不放回取球兩次,求第一次取到球的編號為偶數且兩個球的編號之和能被3整除的概率;
(2)若先從袋中隨機取一個球,該球的編號為a,將球放回袋中,然后再從袋中隨機取一個球,該球的編號為b,求直線ax+by+1=0與圓
有公共點的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知:以點C (t,
)(t∈R , t ≠ 0)為圓心的圓與
軸交于點O, A,與y軸交于點O, B,其中O為原點.
(1)求證:△OAB的面積為定值;
(2)設直線y = –2x+4與圓C交于點M, N,若|OM| = |ON|,求圓C的方程.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com