中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

如圖,在三棱錐中,分別為的中點.

(1)求證:EF∥平面;
(2)若平面平面,且º,求證:平面平面

如下證明:

解析試題分析:(1)可根據線面平行的判斷定理證明,由已知有平面
(2)先由面面垂直線面垂直線面垂直面面垂直即可, ,平面平面
平面..
,又平面.
平面平面.
試題解析:證明:(1)分別是的中點,.
平面平面
平面.     (6分)
(2)在三角形中,中點,
.
平面平面,平面平面
平面.
.

,又
平面.
平面平面.     (12分)
考點:本題考查線線、線面、面面的平行與垂直的判斷和性質.可通過線線平行(垂直)線面平行(垂直)面面平行(垂直)的等價轉化方法.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

如圖,AB是圓的直徑,PA垂直圓所在的平面,C是圓上的點.
 
(1)求證:平面PAC⊥平面PBC
(2)若AB=2,AC=1,PA=1,求二面角C­PB­A的余弦值..

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,在矩形中,點為邊上的點,點為邊的中點,,現將沿邊折至位置,且平面平面.

(1) 求證:平面平面
(2) 求四棱錐的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,在四棱錐中,底面是邊長為的正方形,,且

(Ⅰ)求證:平面
(Ⅱ)求二面角的余弦值;
(Ⅲ)棱上是否存在一點,使直線與平面所成的角是?若存在,求的長;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,在底面為平行四邊形的四棱柱中,底面,,,

(Ⅰ)求證:平面平面
(Ⅱ)若,求四棱錐的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

四棱錐P-ABCD中,側面PAD⊥底面ABCD,底面ABCD是邊長為2的正方形,又PA=PD,∠APD=60°,E、G分別是BC、PE的中點.

(1)求證:AD⊥PE;
(2)求二面角E-AD-G的正切值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,平面是矩形,,點的中點,點是邊上的動點.

(Ⅰ)求三棱錐的體積;
(Ⅱ)當點的中點時,試判斷與平面的位置關系,并說明理由;
(Ⅲ)證明:無論點在邊的何處,都有.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,在三棱錐中,平面.

(Ⅰ)求證:
(Ⅱ)設分別為的中點,點為△內一點,且滿足
求證:∥面
(Ⅲ)若,求二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖所示,已知AB為圓O的直徑,點D為線段AB上一點,且,點C為圓O上一點,且.點P在圓O所在平面上的正投影為點D,PD=DB.

(1)求證:平面
(2)求點到平面的距離.

查看答案和解析>>

同步練習冊答案