(本小題12分)
給定拋物線
,
是拋物線
的焦點,過點
的直線
與
相交于
、
兩點,
為坐標(biāo)原點.
(Ⅰ)設(shè)
的斜率為1,求以
為直徑的圓的方程;
(Ⅱ)設(shè)
,求直線
的方程.
(Ⅰ)
(Ⅱ)![]()
解析試題分析:(Ⅰ)解:
又
直線
的斜率為1,
直線![]()
的方程為:
,代入
,得:
,
由根與系數(shù)的關(guān)系得:
,易得
中點即圓心的坐標(biāo)為
,
又
,
所求的圓的方程為:
. ……4分
(Ⅱ)
而
,
,
直線
的斜率存在,
設(shè)直線
的斜率為
,則直線
的方程為:
,代入
,得:
,
由根與系數(shù)的關(guān)系得:
,![]()
,![]()
或
,![]()
,
直線
的方程為:
. ……12分
考點:本小題主要考查直線與拋物線的位置關(guān)系和圓的標(biāo)準(zhǔn)方程的求解以及根與系數(shù)的關(guān)系,考查學(xué)生綜合運(yùn)用所學(xué)知識解決問題的能力和運(yùn)算求解能力.
點評:直線與圓錐曲線的位置關(guān)系是考查的重點內(nèi)容也是?嫉膬(nèi)容,思路不難,但是運(yùn)算量比較大,而且根與系數(shù)的關(guān)系經(jīng)常用到,應(yīng)該加強(qiáng)訓(xùn)練.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(滿分10分)(Ⅰ) 設(shè)橢圓方程
的左、右頂點分別為
,點M是橢圓上異于
的任意一點,設(shè)直線
的斜率分別為
,求證
為定值并求出此定值;
(Ⅱ)設(shè)橢圓方程
的左、右頂點分別為
,點M是橢圓上異于
的任意一點,設(shè)直線
的斜率分別為
,利用(Ⅰ)的結(jié)論直接寫出
的值。(不必寫出推理過程)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)已知拋物線的頂點在原點,對稱軸是x軸,拋物線上的點M(-3,m)到焦點的距離為5,求拋物線的方程和m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知直線l:y=2x-4交拋物線y2=4x于A,B兩點,試在拋物線AOB這段曲線上求一點P,使△PAB的面積最大,并求出這個最大面積.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知橢圓
及直線
,當(dāng)直線和橢圓有公共點時.
(1)求實數(shù)
的取值范圍;
(2)求被橢圓截得的最長的弦所在的直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓
,直線
:y=x+m
(1)若
與橢圓有一個公共點,求
的值;
(2)若
與橢圓相交于P,Q兩點,且|PQ|等于橢圓的短軸長,求m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知雙曲線
的離心率為
,且過點P(
).
(1)求雙曲線C的方程;
(2)若直線
與雙曲線C恒有兩個不同的交點A,B,且
(其中O為原點),求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知雙曲線C的中心在原點,拋物線
的焦點是雙曲線C的一個焦點,且雙曲線經(jīng)過點
,又知直線
與雙曲線C相交于A、B兩點.
(1)求雙曲線C的方程;
(2)若
,求實數(shù)k值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com