中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
已知函數f(x)的導函數為f ′(x),且對任意x>0,都有f ′(x)>
(Ⅰ)判斷函數F(x)=在(0,+∞)上的單調性;
(Ⅱ)設x1,x2∈(0,+∞),證明:f(x1)+f(x2)<f(x1+x2);
(Ⅲ)請將(Ⅱ)中的結論推廣到一般形式,并證明你所推廣的結論.
(Ⅰ)F(x)=在(0,+∞)上是增函數;(Ⅱ)f(x1)+f(x2)<f(x1+x2);(Ⅲ)f(x1)+f(x2)+…+f(xn)<f(x1+x2+…+xn).

試題分析:(Ⅰ)判斷F(x)的單調性,則需對F(x)求導,得F′(x)=,∵f ′(x)>,x>0,則xf ′(x)-f(x)>0,即F′(x)>0,F(x)=在(0,+∞)上是增函數.(Ⅱ)要證明f(x1)+f(x2)<f(x1+x2),可以從第(Ⅰ)的結論入手,∵x1>0,x2>0,∴0<x1<x1+x2,F(x)=在(0,+∞)上是增函數,則F(x1)<F(x1+x2),即,而x1>0,所以f(x1)<f(x1+x2),同理f(x2)<f(x1+x2),兩式相加,得f(x1)+f(x2)<f(x1+x2),得證.(Ⅲ)(Ⅱ)中結論的推廣形式為:設x1,x2,…,xn∈(0,+∞),其中n≥2,則f(x1)+f(x2)+…+f(xn)<f(x1+x2+…+xn).證明的方法同(Ⅱ)的證明,∵x1>0,x2>0,…,xn>0,∴0<x1<x1+x2+…+xn.F(x)=在(0,+∞)上是增函數,F(x1)<F(x1+x2+…+xn),即,而x1>0,所以f(x1)<f(x1+x2+…+xn),同理f(x2)<f(x1+x2+…+xn),……
f(xn)<f(x1+x2+…+xn),以上n個不等式相加,得f(x1)+f(x2)+…+f(xn)<f(x1+x2+…+xn),得證.
試題解析:(Ⅰ)對F(x)求導數,得F′(x)=
∵f ′(x)>,x>0,∴xf ′(x)>f(x),即xf ′(x)-f(x)>0,
∴F′(x)>0.
故F(x)=在(0,+∞)上是增函數.
(Ⅱ)∵x1>0,x2>0,∴0<x1<x1+x2
由(Ⅰ),知F(x)=在(0,+∞)上是增函數,
∴F(x1)<F(x1+x2),即
∵x1>0,∴f(x1)<f(x1+x2).
同理可得f(x2)<f(x1+x2).
以上兩式相加,得f(x1)+f(x2)<f(x1+x2).
(Ⅲ)(Ⅱ)中結論的推廣形式為:
設x1,x2,…,xn∈(0,+∞),其中n≥2,則f(x1)+f(x2)+…+f(xn)<f(x1+x2+…+xn).
∵x1>0,x2>0,…,xn>0,
∴0<x1<x1+x2+…+xn
由(Ⅰ),知F(x)=在(0,+∞)上是增函數,
∴F(x1)<F(x1+x2+…+xn),即
∵x1>0,
∴f(x1)<f(x1+x2+…+xn).
同理可得
f(x2)<f(x1+x2+…+xn),
f(x3)<f(x1+x2+…+xn),
……
f(xn)<f(x1+x2+…+xn).
以上n個不等式相加,得f(x1)+f(x2)+…+f(xn)<f(x1+x2+…+xn).
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

已知函數
(I) 當,求的最小值;
(II) 若函數在區間上為增函數,求實數的取值范圍;
(III)過點恰好能作函數圖象的兩條切線,并且兩切線的傾斜角互補,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數
(1)求函數單調遞增區間;
(2)若存在,使得是自然對數的底數),求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知是正實數,設函數
(Ⅰ)設,求的單調區間;
(Ⅱ)若存在,使成立,求的取值范圍。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數
(Ⅰ)若,求函數的極值;
(Ⅱ)若函數上單調遞減,求實數的取值范圍;
(Ⅲ)在函數的圖象上是否存在不同的兩點,使線段的中點的橫坐標與直線的斜率之間滿足?若存在,求出;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知R,函數e
(1)若函數沒有零點,求實數的取值范圍;
(2)若函數存在極大值,并記為,求的表達式;
(3)當時,求證:

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

函數f(x)=x2-ln x的單調遞減區間為________.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

若關于x的不等式的解集為,且函數在區間上不是單調函數,則實數的取值范圍為 (   )
A.B.
C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

若函數有大于零的極值點,則的取值范圍是_________.

查看答案和解析>>

同步練習冊答案