已知函數(shù)
,其中
.
(Ⅰ)若
,求
的值,并求此時曲線
在點
處的切線方程;
(Ⅱ)求函數(shù)
在區(qū)間
上的最小值.
(Ⅰ)
、
;(Ⅱ)當
時
;當
時,
;當
時,
的最小值為
。
解析試題分析:(Ⅰ)先求導(dǎo),代入0可求得a的值。再將
代入原函數(shù)求
,既得切點坐標,再將
代入導(dǎo)函數(shù)求
,根據(jù)導(dǎo)數(shù)的幾何意義可知
即為切線在點
處切線的斜率,根據(jù)直線方程的點斜式即可求得切線方程。(Ⅱ)先求導(dǎo)數(shù),及其零點,判斷導(dǎo)數(shù)符號變化,即可得原函數(shù)增減變化,可得其極值。再求其端點處的函數(shù)值。比較極值和端點處函數(shù)值最小的一個即為最小值。此題注意分類討論。
試題解析:解:(Ⅰ)已知函數(shù)
,
所以
,
,
又
,所以
.
又
,
所以曲線
在點
處的切線方程為
. 5分
(Ⅱ)
,![]()
令
,則
.
(1)當
時,
在
上恒成立,所以函數(shù)
在區(qū)間
上單調(diào)遞增,所以
;
(2)當
時,在區(qū)間
上,
,在區(qū)間
上,
,所以函數(shù)
在區(qū)間
上單調(diào)遞減,在區(qū)間
上單調(diào)遞增,且
是![]()
上唯一極值點,所以
;
(3)當
時,在區(qū)間
上,
(僅有當
時
),所以
在區(qū)間
上單調(diào)遞減
所以函數(shù)
.
綜上所述,當
時,函數(shù)
的最小值為
,
時,函數(shù)
的最小值為
13分
考點:(1)導(dǎo)數(shù)、導(dǎo)數(shù)的幾何意義(2)利用導(dǎo)數(shù)研究函數(shù)性質(zhì)
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=(ax2+bx+c)ex且f(0)=1,f(1)=0.
(1)若f(x)在區(qū)間[0,1]上單調(diào)遞減,求實數(shù)a的取值范圍;
(2)當a=0時,是否存在實數(shù)m使不等式2f(x)+4xex≥mx+1≥-x2+4x+1對任意x∈R恒成立?若存在,求出m的值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知P(
)為函數(shù)
圖像上一點,O為坐標原點,記直線OP的斜率
。
(Ⅰ)求函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)設(shè)
,求函數(shù)
的最小值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知關(guān)于
的函數(shù)![]()
(Ⅰ)當
時,求函數(shù)
的極值;
(Ⅱ)若函數(shù)
沒有零點,求實數(shù)
取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(其中
).
(Ⅰ)若
為
的極值點,求
的值;
(Ⅱ)在(Ⅰ)的條件下,解不等式
;
(Ⅲ)若函數(shù)
在區(qū)間
上單調(diào)遞增,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=aex,g(x)=lnx-lna,其中a為常數(shù), e=2.718…,且函數(shù)y=f(x)和y=g(x)的圖像在它們與坐標軸交點處的切線互相平行.
(1)求常數(shù)a的值;
(2)若存在x使不等式
>
成立,求實數(shù)m的取值范圍;
(3)對于函數(shù)y=f(x)和y=g(x)公共定義域內(nèi)的任意實數(shù)x0,我們把|f(x0)-g(x0)|的值稱為兩函數(shù)在x0處的偏差.求證:函數(shù)y=f(x)和y=g(x)在其公共定義域內(nèi)的所有偏差都大于2.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com