(本小題滿(mǎn)分12分)已知函數(shù)
,其中
.
(Ⅰ)若
是
的極值點(diǎn),求
的值;
(Ⅱ)求
的單調(diào)區(qū)間;
(Ⅲ)若
在
上的最大值是
,求
的取值范圍 .
(Ⅰ)
時(shí),符合題意.
(Ⅱ)綜上,當(dāng)
時(shí),
的增區(qū)間是
,減區(qū)間是
;
當(dāng)
時(shí),
的增區(qū)間是
,減區(qū)間是
和
;
當(dāng)
時(shí),
的減區(qū)間是
;
當(dāng)
時(shí),
的增區(qū)間是
;減區(qū)間是
和
.
(Ⅲ)
在
上的最大值是
時(shí),
的取值范圍是
.
解析
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分14分)(注意:仙中、一中、八中的學(xué)生三問(wèn)全做,其他學(xué)校的學(xué)生只做前兩問(wèn))
已知函數(shù)![]()
(Ⅰ)若
,試確定函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)若
,且對(duì)于任意
,
恒成立,試確定實(shí)數(shù)
的取值范圍;
(Ⅲ)設(shè)函數(shù)
,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿(mǎn)分15分 )已知函數(shù)
.
(1)求函數(shù)
的最大值;
(2)若
,不等式
恒成立,求實(shí)數(shù)
的取值范圍;
(3)若
,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)
其中
,曲線(xiàn)
在點(diǎn)
處的切線(xiàn)垂直于
軸.
(Ⅰ)求
的值;
(Ⅱ)求函數(shù)
的極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(12分)已知函數(shù)![]()
(1)若曲線(xiàn)
在點(diǎn)
處與直線(xiàn)
相切,求
的值;
(2)求函數(shù)
的單調(diào)區(qū)間與極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分12分)
已知函數(shù)
.
(I)若
,求函數(shù)
的極值;
(II)若對(duì)任意的
,都有
成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本大題13分)已知函數(shù)
(
為常數(shù))
(1)若
在區(qū)間
上單調(diào)遞減,求
的取值范圍;
(2)若
與直線(xiàn)
相切:
(ⅰ)求
的值;
(ⅱ)設(shè)
在
處取得極值,記點(diǎn)M (
,
),N(
,
),P(
),
, 若對(duì)任意的m
(
, x
),線(xiàn)段MP與曲線(xiàn)f(x)均有異于M,P的公共點(diǎn),試確定
的最小值,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知
為實(shí)數(shù),
,
為
的導(dǎo)函數(shù).
(Ⅰ)若
,求
在
上的最大值和最小值;
(Ⅱ)若
在
和
上均單調(diào)遞增,求
的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
.(e是自然對(duì)數(shù)的底數(shù))
(1)判斷
在
上是否是單調(diào)函數(shù),并寫(xiě)出
在該區(qū)間上的最小值;
(2)證明:![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com