已知函數(shù)
(
)
(1)求
的定義域;
(2)問是否存在實數(shù)
、
,當
時,
的值域為
,且
若存在,求出
、
的值,若不存在,說明理由.
(1)(0,+
);(2)![]()
解析試題分析:(1)由題意可得對數(shù)的真數(shù)大于零即
.又因為
.所以可得
.所以可得定義域的結(jié)論.
(2)由(1)可得在(1,+∞)上遞增.又由于f(x)的值域為(0,+∞)所以f(1)=0.所以
.又因為
.由此可解得
.本題通過對數(shù)的定義域,滲透參數(shù)的不等式的解法是難點.通過定義域與值域的關(guān)系建立兩個等式即可求出相應(yīng)的結(jié)論.
試題解析:(1)由
得
.所以x>0.所以f(x)的定義域為(0,+
).
(2)令
.又
.所以g(x)在(0,+
)上為增函數(shù).當
時.g(x)>1.所以g(1)=1,即
…①.又因為f(2)=lg2.所以
…②.解由①②得.
.
考點:1.對數(shù)的定義域.2.函數(shù)的單調(diào)性.3.含參的不等式的解法.
科目:高中數(shù)學 來源: 題型:解答題
定義在
上的函數(shù)
同時滿足以下條件:
①
在(0,1)上是減函數(shù),在(1,+∞)上是增函數(shù);
②
是偶函數(shù);
③
在x=0處的切線與直線
y=x+2垂直.
(1)求函數(shù)
=
的解析式;
(2)設(shè)g(x)=
,若存在實數(shù)x∈[1,e],使
<
,求實數(shù)m的取值范圍..
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)
滿足:對任意
,都有
成立,且
時,
.
(1)求
的值,并證明:當
時,
;
(2)判斷
的單調(diào)性并加以證明;
(3)若
在
上遞減,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)f(x)=
,x∈[1,3],
(1)求f(x)的最大值與最小值;
(2)若
于任意的x∈[1,3],t∈[0,2]恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)
滿足
,當
時,![]()
,當
時,
的最大值為-4.
(I)求實數(shù)
的值;
(II)設(shè)
,函數(shù)
,
.若對任意的
,總存在
,使
,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)
.![]()
(1)請在所給的平面直角坐標系中畫出函數(shù)
的圖像;
(2)根據(jù)函數(shù)
的圖像回答下列問題:
①求函數(shù)
的單調(diào)區(qū)間;
②求函數(shù)
的值域;
③求關(guān)于
的方程
在區(qū)間
上解的個數(shù).
(回答上述3個小題都只需直接寫出結(jié)果,不需給出演算步驟)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
定義在
上的函數(shù)
,如果對任意
,恒有
(
,
)成立,則稱
為
階縮放函數(shù).
(1)已知函數(shù)
為二階縮放函數(shù),且當
時,
,求
的值;
(2)已知函數(shù)
為二階縮放函數(shù),且當
時,
,求證:函數(shù)
在
上無零點;
(3)已知函數(shù)
為
階縮放函數(shù),且當
時,
的取值范圍是
,求
在
(
)上的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設(shè)
(
為實常數(shù)).
(1)當
時,證明:
①
不是奇函數(shù);②
是
上的單調(diào)遞減函數(shù).
(2)設(shè)
是奇函數(shù),求
與
的值.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com