中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

定義在上的函數,如果對任意,恒有)成立,則稱階縮放函數.
(1)已知函數為二階縮放函數,且當時,,求的值;
(2)已知函數為二階縮放函數,且當時,,求證:函數上無零點;
(3)已知函數階縮放函數,且當時,的取值范圍是,求)上的取值范圍.

(1)1;(2)詳見解析;(3).

解析試題分析:(1) 本小題首先利用函數為二階縮放函數,所以,于是由得,,由題中條件得
(2)本小題首先對)時,,得到,方程均不屬于,當)時,方程無實數解;
(3)本小題針對時,有,依題意可得,然后通過分析可得取值范圍為.
試題解析:(1)由得,      2分
由題中條件得        4分
(2)當)時,,依題意可得:
  6分
方程均不屬于  8分
)時,方程無實數解。
注意到
所以函數上無零點。  10分
(3)當時,有,依題意可得:

時,的取值范圍是 12分
所以當時,的取值范圍是。 14分
由于 16分
所以函數)上的取值范圍是:
。 18分
考點:1.新定義;2.函數的單調性.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

,其中.
(I) 若,求的值;    (II) 若,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數f(x)=log4(4x+1)+kx(k∈R)是偶函數.
(1)求k的值;
(2)探究函數f(x)=ax+(a、b是正常數)在區間上的單調性(只需寫出結論,不要求證明).并利用所得結論,求使方程f(x)-log4m=0有解的m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(1)求的定義域;
(2)問是否存在實數,當時,的值域為,且 若存在,求出的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

提高過江大橋的車輛通行能力可改善整個城市的交通狀況.在一般情況下,大橋上的車流速度v(單位:千米/小時)是車流密度(單位:輛/千米)的函數.當橋上的車流密度達到200輛/千米時,造成堵塞,此時車流速度為0;當車流密度不超過20輛/千米時,車流速度為60千米/小時,研究表明:當時,車流速度是車流密度x的一次函數.
(1)當時,求函數的表達式;
(2)當車流密度為多大時,車流量(單位時間內通過橋上某觀點的車輛數,單位:輛/每小時)可以達到最大,并求出最大值(精確到1輛/小時)

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知,函數.
(1) 如果實數滿足,函數是否具有奇偶性? 如果有,求出相應的值;如果沒有,說明原因;
(2) 如果,討論函數的單調性。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,且(1)判斷函數的奇偶性;(2)判斷上的單調性并加以證明.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數的定義域為
(1)求
(2)若,且,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數的圖象關于軸對稱,且.
(1)求函數的解析式;
(2)解不等式.

查看答案和解析>>

同步練習冊答案