中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
(理)已知數列{an}的通項公式為an=3n,集合A={y|y=ai , i≤99 , i∈N*},B={y|y=4m+1,m∈N*}.現在集合A中隨機取一個元素y,則y∈B的概率為
49
99
49
99
分析:設y=ai=3i∈A,i≤99,i∈N*.當i=2k,k∈N+時,y=32k=9k=(8+1)k=C
 
0
k
8k+C
 
1
k
8k-1+…+C
 
k-1
k
8+C
 
k
k
=4×2(C
 
0
k
8k-1+C
 
1
k
8k-2+…+C
 
k-1
k
)+1,故y∈B.由此能求出在集合A中隨機取一個元素y,則y∈B的概率.
解答:解:設y=ai=3i∈A,i≤99,i∈N*
當i=2k,k∈N+時,
∵y=32k=9k=(8+1)k=C
 
0
k
8k+C
 
1
k
8k-1+…+C
 
k-1
k
8+C
 
k
k
=4×2(C
 
0
k
8k-1+C
 
1
k
8k-2+…+C
 
k-1
k
)+1,
∴y∈B.
∵y=ai=3i∈A,i≤99,i∈N*
∴1≤2k≤99,
1
2
≤k≤
99
2
,k∈N*

∴滿足條件的k有49個,
∴在集合A中隨機取一個元素y,則y∈B的概率為
49
99

故答案為:
49
99
點評:本題考查等比數列的通項公式的應用,解題時要認真審題,注意二項式定理的合理運用.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(理)已知數列{an}滿足a1=1,an=
12
an-1+1(n≥2),
(1)求證:數列{an-2}是等比數列,并求通項an
(2)求{an}前n項和Sn

查看答案和解析>>

科目:高中數學 來源: 題型:

(理)已知數列{an},Sn是其前n項和,Sn=1-an(n∈N*),
(1)求數列{an}的通項公式;
(2)令數列{bn}的前n項和為Tn,bn=(n+1)an,求Tn
(3)設cn=
3an
(2-an)(1-an)
,數列{cn}的前n項和Rn,且Rnλ+
m
λ
(λ>0,m>0)
恒成立,求m的范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

(理)已知數列{an}是等差數列,且a1=-2,a1+a2+a3=-12.
(1)求數列{an}的通項公式;
(2)若b1=0,bn+1=7bn+6,n∈N*,求數列{an(bn+1)}的前n項和Tn的公式.

查看答案和解析>>

科目:高中數學 來源: 題型:

(理)已知數列{an}滿足a1=2,前n項和為Snan+1=
pan+n-1(n為奇數)
-an-2n(n為偶數)

(1)若數列{bn}滿足bn=a2n+a2n+1(n≥1),試求數列{bn}前3項的和T3
(2)若數列{cn}滿足cn=a2n,試判斷{cn}是否為等比數列,并說明理由;
(3)當p=
1
2
時,對任意n∈N*,不等式S2n+1≤log
1
2
(x2+3x)
都成立,求x的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

(理)已知數列{an}前n項和Sn=-ban+1-
1
(1+b)n
其中b是與n無關的常數,且0<b<1,若
limSn
n→∞
存在,則
limSn=
n→∞
1
1

查看答案和解析>>

同步練習冊答案