已知線段
,
的中點為
,動點
滿足
(
為正常數(shù)).
(1)建立適當?shù)闹苯亲鴺讼担髣狱c
所在的曲線方程;
(2)若
,動點
滿足
,且
,試求
面積的最大值和最小值.
(1)
;(2)
的最小值為
,最大值為1.
解析試題分析:(1)先以
為圓心,
所在直線為軸建立平面直角坐標系,以
與
的大小關系進行分類討論,從而即可得到動點
所在的曲線;
(2)當
時,其曲線方程為橢圓
,設
,
,
的斜率為![]()
,則
的方程為
,將直線的方程代入橢圓的方程,消去y得到關于x的一元二次方程,再結合涉及弦長問題,常用“韋達定理法”設而不求計算弦長(即應用弦長公式),求得△AOB面積,最后求出面積的最大值即可,從而解決問題.
(1)以
為圓心,
所在直線為軸建立平面直角坐標系.若
,即
,動點
所在的曲線不存在;若
,即
,動點
所在的曲線方程為
;若
,即
,動點
所在的曲線方程為
.……4分
(2)當
時,其曲線方程為橢圓
.由條件知
兩點均在橢圓
上,且![]()
設
,
,
的斜率為![]()
,則
的方程為
,
的方程為
解方程組
,得
,![]()
同理可求得
,
面積
=![]()
令
則![]()
令
所以
,即![]()
當
時,可求得
,故
,
故
的最小值為
,最大值為1.
考點:直線與圓錐曲線的綜合問題.
科目:高中數(shù)學 來源: 題型:解答題
已知圓G:
經(jīng)過橢圓
的右焦點F及上頂點B,過橢圓外一點(m,0)(
)傾斜角為
的直線L交橢圓與C、D兩點.
(1)求橢圓的方程;
(2)若右焦點F在以線段CD為直徑的圓E的內部,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,設橢圓
的左右焦點為
,上頂點為
,點
關于
對稱,且![]()
(1)求橢圓
的離心率;
(2)已知
是過
三點的圓上的點,若
的面積為
,求點
到直線
距離的最大值。![]()
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知中心在原點的雙曲線C的右焦點為(2,0),右頂點為(
,0).
(1)求雙曲線C的方程;
(2)若直線l:y=kx+
與雙曲線C恒有兩個不同的交點A和B,且
·
>2(其中O為原點),求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(滿分14分)如圖在平面直角坐標系
中,
分別是橢圓
的左右焦點,頂點
的坐標是
,連接
并延長交橢圓于點
,過點
作
軸的垂線交橢圓于另一點
,連接
.![]()
(1)若點
的坐標為
,且
,求橢圓的方程;
(2)若
,求橢圓離心率
的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓C:
(
)的左焦點為
,離心率為
.
(1)求橢圓C的標準方程;
(2)設O為坐標原點,T為直線
上任意一點,過F作TF的垂線交橢圓C于點P,Q.當四邊形OPTQ是平行四邊形時,求四邊形OPTQ的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,設橢圓
的左、右焦點分別為
,點
在橢圓上,
,
,
的面積為
.
(1)求該橢圓的標準方程;
(2)設圓心在
軸上的圓與橢圓在
軸的上方有兩個交點,且圓在這兩個交點處的兩條切線相互垂直并分別過不同的焦點,求圓的半徑..![]()
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(12分)(2011•重慶)如圖,橢圓的中心為原點0,離心率e=
,一條準線的方程是x=2![]()
![]()
(Ⅰ)求橢圓的標準方程;
(Ⅱ)設動點P滿足:
=
+2
,其中M、N是橢圓上的點,直線OM與ON的斜率之積為﹣
,
問:是否存在定點F,使得|PF|與點P到直線l:x=2
的距離之比為定值;若存在,求F的坐標,若不存在,說明理由.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com