已知圓C經(jīng)過點(diǎn)A(-2,0),B(0,2),且圓心C在直線y=x上,又直線l:y=kx+1與圓C相交于P、Q兩點(diǎn).
(1)求圓C的方程;
(2)過點(diǎn)(0,1)作直線l1與l垂直,且直線l1與圓C交于M、N兩點(diǎn),求四邊形PMQN面積的最大值.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知圓M:
,直線
,
上一點(diǎn)A的橫坐標(biāo)為
,過點(diǎn)A作圓M的兩條切線
,
,切點(diǎn)分別為B,C.![]()
(1)當(dāng)
時,求直線
,
的方程;
(2)當(dāng)直線
,
互相垂直時,求
的值;
(3)是否存在點(diǎn)A,使得
?若存在,求出點(diǎn)A的坐標(biāo),若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知圓![]()
![]()
(1)將圓
的方程化為標(biāo)準(zhǔn)方程,并指出圓心坐標(biāo)和半徑;
(2)求直線
被圓
所截得的弦長。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,設(shè)橢圓
的左、右焦點(diǎn)分別為
,點(diǎn)
在橢圓上,
,
,
的面積為
.
(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)是否存在圓心在
軸上的圓,使圓在
軸的上方與橢圓兩個交點(diǎn),且圓在這兩個交點(diǎn)處的兩條切線相互垂直并分別過不同的焦點(diǎn)?若存在,求圓的方程,若不存在,請說明理由.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,△ABO三邊上的點(diǎn)C、D、E都在⊙O上,已知AB∥DE,AC=CB.![]()
(1)求證:直線AB是⊙O的切線;
(2)若AD=2,且tan∠ACD=
,求⊙O的半徑r的長.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知點(diǎn)A(-1,0)與點(diǎn)B(1,0),C是圓x2+y2=1上的動點(diǎn),連結(jié)BC并延長至D,使得CD=BC,求AC與OD的交點(diǎn)P的軌跡方程.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
如圖,半徑為1的圓與直線l相交于A、B兩個不同的點(diǎn),設(shè)
,當(dāng)直
線l平行移動時,則圓被直線掃過部分(圖中陰影部分)的面積
關(guān)于
的函數(shù)
=____________________.![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com