如圖,設(shè)橢圓
的左、右焦點(diǎn)分別為
,點(diǎn)
在橢圓上,
,
,
的面積為
.
(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)是否存在圓心在
軸上的圓,使圓在
軸的上方與橢圓兩個(gè)交點(diǎn),且圓在這兩個(gè)交點(diǎn)處的兩條切線相互垂直并分別過不同的焦點(diǎn)?若存在,求圓的方程,若不存在,請(qǐng)說明理由.![]()
(1)
;(2)存在滿足條件的圓,其方程為
.
解析試題分析:(1)由題設(shè)知
其中![]()
由
,結(jié)合條件
的面積為
,可求
的值,再利用橢圓的定義和勾股定理即可求得
的值,從而確定橢圓的標(biāo)準(zhǔn)方程;
(2)假設(shè)存在圓心在
軸上的圓,使圓在
軸的上方與橢圓兩個(gè)交點(diǎn),且圓在這兩個(gè)交點(diǎn)處的兩條切線相互垂直并分別過不同的焦點(diǎn);設(shè)圓心在
軸上的圓與橢圓在
軸的上方有兩個(gè)交點(diǎn)為
由圓的對(duì)稱性可知
,利用
在圓上及
確定交點(diǎn)的坐標(biāo),進(jìn)而得到圓的方程.
解:(1)設(shè)
,其中
,
由
得![]()
從而
故
.
從而
,由
得
,因此
.
所以
,故![]()
因此,所求橢圓的標(biāo)準(zhǔn)方程為:![]()
![]()
(2)如圖,設(shè)圓心在
軸上的圓
與橢圓
相交,
是兩個(gè)交點(diǎn),
,
,
是圓
的切線,且![]()
![]()
由圓和橢圓的對(duì)稱性,易知![]()
,
由(1)知
,所以
,再由![]()
![]()
得
,由橢圓方程得
,即
,解得
或
.
當(dāng)
時(shí),
重合,此時(shí)題設(shè)要求的圓不存在.
當(dāng)
時(shí),過
分別與
,
垂直的直線的交點(diǎn)即為圓心
,設(shè)![]()
由
得
而
故![]()
圓
的半徑![]()
綜上,存在滿足條件的圓,其方程為:![]()
考點(diǎn):1、橢圓的標(biāo)準(zhǔn)方程;2、圓的標(biāo)準(zhǔn)方程;3、直線與圓的位置關(guān)系;4、平面向量數(shù)量積的應(yīng)用.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知圓心坐標(biāo)為
的圓
與
軸及直線
均相切,切點(diǎn)分別為
、
,另一圓
與圓
、
軸及直線
均相切,切點(diǎn)分別為
、
。
(1)求圓
和圓
的方程;
(2)過
點(diǎn)作
的平行線
,求直線
被圓
截得的弦的長度;![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知圓A:x2+y2-2x-2y-2=0.
(1)若直線l:ax+by-4=0平分圓A的周長,求原點(diǎn)O到直線l的距離的最大值;
(2)若圓B平分圓A的周長,圓心B在直線y=2x上,求符合條件且半徑最小的圓B的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知圓C的方程為
,過點(diǎn)M(2,4)作圓C的兩條切線,切點(diǎn)分別為A,B,
直線AB恰好經(jīng)過橢圓T:
(a>b>0)的右頂點(diǎn)和上頂點(diǎn).
(1)求橢圓T的方程;
(2)已知直線l:y=kx+
(k>0)與橢圓T相交于P,Q兩點(diǎn),O為坐標(biāo)原點(diǎn),
求△OPQ面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知圓C經(jīng)過點(diǎn)A(-2,0),B(0,2),且圓心C在直線y=x上,又直線l:y=kx+1與圓C相交于P、Q兩點(diǎn).
(1)求圓C的方程;
(2)過點(diǎn)(0,1)作直線l1與l垂直,且直線l1與圓C交于M、N兩點(diǎn),求四邊形PMQN面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知圓
通過不同三點(diǎn)
,且直線
斜率為
,
(1)試求圓
的方程;
(2)若
是
軸上的動(dòng)點(diǎn),
分別切圓
于
兩點(diǎn),
①求證:直線
恒過一定點(diǎn);
②求
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知直線l:y=x+m,m∈R.
(1)若以點(diǎn)M(2,0)為圓心的圓與直線l相切與點(diǎn)P,且點(diǎn)P在y軸上,求該圓的方程;
(2)若直線l關(guān)于x軸對(duì)稱的直線為lˊ,問直線lˊ與拋物線C:
是否相切?說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
求過兩點(diǎn)A(1,4)、B(3,2)且圓心在直線y=0上的圓的標(biāo)準(zhǔn)方程,并判斷點(diǎn)P(2,4)與圓的關(guān)系.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
已知圓C過點(diǎn)(1,0),且圓心在x軸的正半軸上,直線
:
被圓C所截得的弦長為
,則過圓心且與直線
垂直的直線的方程為 .
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com