中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
已知定義在R上的奇函數f(x)滿足f(x-4)=-f(x),且x∈[0,2]時,f(x)=log2(x+1),甲,乙,丙,丁四位同學有下列結論:
甲:f(3)=1;
乙:函數f(x)在[-6,-2]上是增函數;
丙:函數f(x)關于直線x=4對稱;
丁:若m∈(0,1),則關于x的方程f(x)-m=0在[-8,8]上所有根之和為-8.
其中正確的是(  )
分析:取x=1,得f(3)=-f(-3)=1;f(x-4)=f(-x),則f(x-2)=f(-x-2);奇函數f(x),x∈[-2,2]時,函數為單調增函數,利用函數f(x)關于直線x=-2對稱,可得函數f(x)在[-6,-2]上是減函數;若m∈(0,1),則關于x的方程f(x)-m=0在[-8,8]上有4個根,其中兩根的和為-6×2=-12,另兩根的和為2×2=4,故可得結論.
解答:解:取x=1,得f(1-4)=-f(1)=-lo
g
(1+1)
2
=-1,所以f(3)=-f(-3)=1,故甲的結論正確;
定義在R上的奇函數f(x)滿足f(x-4)=-f(x),則f(x-4)=f(-x),∴f(x-2)=f(-x-2),∴函數f(x)關于直線x=-2對稱,故丙不正確;
奇函數f(x),x∈[0,2]時,f(x)=log2(x+1),∴x∈[-2,2]時,函數為單調增函數,∵函數f(x)關于直線x=-2對稱,∴函數f(x)在[-6,-2]上是減函數,故乙不正確;
若m∈(0,1),則關于x的方程f(x)-m=0在[-8,8]上有4個根,其中兩根的和為-6×2=-12,另兩根的和為2×2=4,所以所有根之和為-8.故丁正確
故選D
點評:本題考查函數的性質,考查學生分析解決問題的能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知定義在R上的單調遞增奇函數以f(x),若當0≤θ≤
π2
時,f(cosθ+msinθ)+f(-2m-2)<0恒成立,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知定義在R上的奇函數f(x).當x<0時,f(x)=x2+2x.
(Ⅰ)求函數f(x)的解析式;
(Ⅱ)問:是否存在實數a,b(a≠b),使f(x)在x∈[a,b]時,函數值的集合為[
1
b
1
a
]
?若存在,求出a,b;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源:大連二十三中學2011學年度高二年級期末測試試卷數學(理) 題型:選擇題

已知定義在R上的奇函數,滿足,且在區間[0,2]上是增函

數,則(     ).     

A.            B.

C.            D.

 

查看答案和解析>>

科目:高中數學 來源:2012屆浙江省高二下學期期末考試理科數學試卷 題型:選擇題

已知定義在R上的奇函數,滿足,且在區間[0,1]上是增函

數,若方程在區間上有四個不同的根,則

(     )

(A)     (B)      (C)      (D)

 

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知定義在R上的單調遞增奇函數以f(x),若當0≤θ≤數學公式時,f(cosθ+msinθ)+f(-2m-2)<0恒成立,求實數m的取值范圍.

查看答案和解析>>

同步練習冊答案