在等比數(shù)列{
}中,
,公比
,且
,
與
的等比中項(xiàng)為2.
(1)求數(shù)列{
}的通項(xiàng)公式;
(2)設(shè)
,求:數(shù)列{
}的前
項(xiàng)和為
,
(1)
(2)![]()
解析試題分析:(1)由a1a5=
,a2a8=
原式可化為
+2a3a5+
=25,即a3+a5=5,又由a3a5=4,解出q,a1即可.(2)
代入
中,得到bn=5-n,即數(shù)列,{bn}是以4為首項(xiàng),-1為公差的等差數(shù)列,根據(jù)等差數(shù)列的前n項(xiàng)和公式求之即可.
試題解析:解:(1)因?yàn)閍1a5+2a3a5+a2a8=25,所以,
+2a3a5+
=25
又an>o,…a3+a5=5, 3分
又a3與a5的等比中項(xiàng)為2,所以,a3a5=4
而q
(0,1),所以,a3>a5,所以,a3=4,a5=1,
,a1=16,所以,
6分
(2)bn=log2an=5-n,所以,bn+1-bn=-1,
所以,{bn}是以4為首項(xiàng),-1為公差的等差數(shù)列 8分
所以,
10分
考點(diǎn):1.等比數(shù)列的性質(zhì)和通項(xiàng)公式;2.等差數(shù)列前n項(xiàng)和;3..對數(shù)的運(yùn)算性質(zhì).
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=x2-(a-1)x-b-1,當(dāng)x∈[b, a]時,函數(shù)f(x)的圖像關(guān)于y軸對稱,數(shù)列
的前n項(xiàng)和為Sn,且Sn=f(n).
(Ⅰ)求數(shù)列
的通項(xiàng)公式;
(Ⅱ)設(shè)
,Tn=b1+b2++bn,若Tn>2m,求m的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列
中,
且點(diǎn)
在直線
上。
(1)求數(shù)列
的通項(xiàng)公式;
(2)若函數(shù)
求函數(shù)
的最小值;
(3)設(shè)
表示數(shù)列
的前項(xiàng)和.試問:是否存在關(guān)于
的整式
,使得
對于一切不小于2的自然數(shù)
恒成立?若存在,寫出
的解析式,并加以證明;若不存在,試說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
數(shù)列{an}中,a1=1,當(dāng)
時,其前n項(xiàng)和滿足
.
(Ⅰ)求Sn的表達(dá)式;
(Ⅱ)設(shè)
,數(shù)列{bn}的前n項(xiàng)和為
,求
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列
中,
,
,數(shù)列
中,
,且點(diǎn)
在直線
上.
(Ⅰ)求數(shù)列
的通項(xiàng)公式;
(Ⅱ)求數(shù)列
的通項(xiàng)公式;
(Ⅲ)若
,求數(shù)列
的前項(xiàng)和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)數(shù)列
的各項(xiàng)都是正數(shù),且對任意
,都有
,其中
為數(shù)列
的前
項(xiàng)和。
(1)求證數(shù)列
是等差數(shù)列;
(2)若數(shù)列
的前
項(xiàng)和為Tn,求Tn。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)等比數(shù)列
的首項(xiàng)為
,公比為
(
為正整數(shù)),且滿足
是
與
的等差中項(xiàng);數(shù)列
滿足
(
).
(Ⅰ)求數(shù)列
的通項(xiàng)公式;
(Ⅱ)試確定
的值,使得數(shù)列
為等差數(shù)列;
(Ⅲ)當(dāng)
為等差數(shù)列時,對每個正整數(shù)
,在
與
之間插入
個2,得到一個新數(shù)列
. 設(shè)
是數(shù)列
的前
項(xiàng)和,試求滿足
的所有正整數(shù)
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等差數(shù)列
的前
項(xiàng)和為
,且
.
(I)求數(shù)列
的通項(xiàng)公式;
(II)設(shè)等比數(shù)列
,若
,求數(shù)列
的前
項(xiàng)和![]()
(Ⅲ)設(shè)
,求數(shù)列
的前
項(xiàng)和![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知各項(xiàng)為正數(shù)的等差數(shù)列
滿足
,
,且
(
).
(Ⅰ)求數(shù)列
的通項(xiàng)公式;
(Ⅱ)設(shè)
,求數(shù)列
的前n項(xiàng)和
.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com