已知函數(shù)![]()
(1)當(dāng)
時(shí),求函數(shù)
的單調(diào)區(qū)間;
(2)若函數(shù)
的圖像在點(diǎn)
處的切線的傾斜角為
,問(wèn):
在什么范圍取值時(shí),函數(shù)
在區(qū)間
上總存在極值?
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
在
與
時(shí)都取得極值
(1)求
的值與函數(shù)
的單調(diào)區(qū)間
(2)若對(duì)
,不等式
恒成立,求
的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分14分)
已知x=4是函數(shù)f(x)=alnx+x2-12x+11的一個(gè)極值點(diǎn).
(1)求實(shí)數(shù)a的值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間;
(3)若直線y=b與函數(shù)y=f(x)的圖象有3個(gè)交點(diǎn),求b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分14分)
已
知二次函數(shù)
的圖象經(jīng)過(guò)點(diǎn)
、
與點(diǎn)
,設(shè)函數(shù)
在
和
處取到極值,其中
,
。
(1)求
的二次項(xiàng)系數(shù)
的值;
(2)比較
的大。ㄒ蟀磸男〉酱笈帕校;
(3)若
,且過(guò)原點(diǎn)存在兩條互相垂直的直線與曲線
均相切,求
。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)
設(shè)函數(shù)
的單調(diào)減區(qū)間是(1,2)
⑴求
的解析式;
⑵若對(duì)任意的
,關(guān)于
的不等式
在
時(shí)有解,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿分14分)
已知函數(shù)
,
,![]()
(Ⅰ)當(dāng)
時(shí),若
在
上單調(diào)遞增,求
的取值范圍;
(Ⅱ)求滿足下列條件的所有實(shí)數(shù)對(duì)
:當(dāng)
是整數(shù)時(shí),存在
,使得
是
的最大值,
是
的最小值;
(Ⅲ)對(duì)滿足(Ⅱ)的條件的一個(gè)實(shí)數(shù)對(duì)
,試構(gòu)造一個(gè)定義在
,且
上的函數(shù)
,使當(dāng)
時(shí),
,當(dāng)
時(shí),
取得最大值的自變量的值構(gòu)成以
為首項(xiàng)的等差數(shù)列。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)f(x)=
ax
+blnx在x=1處有極值
.
(1)求a,b的值;
(2)判斷函數(shù)y=f(x)的單調(diào)性并求出單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分13分)
已知二次函數(shù)
,直線
,直線![]()
(其中
,
為常數(shù));.若直線
1、
2與函數(shù)
的圖象以及
、
軸與函數(shù)
的圖象所圍成的封閉圖形如圖陰影所示.
(Ⅰ)求
、
、
的值;
(Ⅱ)求陰影面積
關(guān)于
的函數(shù)
的解析式;
(Ⅲ)若
問(wèn)是否存在實(shí)數(shù)
,使得
的圖象與
的圖象有且只有兩個(gè)不同的交點(diǎn)?若存在,求出
的值;若不存在,說(shuō)明理由.![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com