已知橢圓
的離心率為
,以原點為圓心,橢圓的短半軸為半徑的圓與直線
相切,直線
與橢圓C相交于A、B兩點.
(Ⅰ)求橢圓C的方程;
(Ⅱ)求
的取值范圍;
科目:高中數學 來源: 題型:解答題
已知拋物線
與雙曲線
有公共焦點
,點
是曲線
在第一象限的交點,且
.
(1)求雙曲線
的方程;
(2)以雙曲線
的另一焦點
為圓心的圓
與直線
相切,圓
.過點
作互相垂直且分別與圓
、圓
相交的直線
和
,設
被圓
截得的弦長為
,
被圓
截得的弦長為
,問:
是否為定值?如果是,請求出這個定值;如果不是,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
設點A(
,0),B(
,0),直線AM、BM相交于點M,且它們的斜率之積為
.
(Ⅰ)求動點M的軌跡C的方程;
(Ⅱ)若直線
過點F(1,0)且繞F旋轉,
與圓
相交于P、Q兩點,
與軌跡C相交于R、S兩點,若|PQ|
求△
的面積的最大值和最小值(F′為軌跡C的左焦點).
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
設
是拋物線![]()
上相異兩點,
到y軸的距離的積為
且
.![]()
(1)求該拋物線的標準方程.
(2)過Q的直線與拋物線的另一交點為R,與
軸交點為T,且Q為線段RT的中點,試求弦PR長度的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,過拋物線
的對稱軸上任一點
作直線與拋物線交于
、
兩點,點Q是點P關于原點的對稱點.![]()
(1)設
,證明:
;
(2)設直線AB的方程是
,過
、
兩點的圓C與拋物線在點A處有共同的切線,求圓C的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
在平面直角坐標系中,已知定點A(-2,0)、B(2,0),異于A、B兩點的動點P滿足
,其中k1、k2分別表示直線AP、BP的斜率.![]()
(Ⅰ)求動點P的軌跡E的方程;
(Ⅱ)若N是直線x=2上異于點B的任意一點,直線AN與(I)中軌跡E交予點Q,設直線QB與以NB為直徑的圓的一個交點為M(異于點B),點C(1,0),求證:|CM|·|CN| 為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
橢圓的左、右焦點分別為
和
,且橢圓過點
.
(Ⅰ)求橢圓
的方程;
(Ⅱ)過點
作不與
軸垂直的直線
交該橢圓于
兩點,
為橢圓的左頂點,試判斷
的大小是否為定值,并說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com