中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

已知拋物線與雙曲線有公共焦點,點是曲線在第一象限的交點,且
(1)求雙曲線的方程;
(2)以雙曲線的另一焦點為圓心的圓與直線相切,圓.過點作互相垂直且分別與圓、圓相交的直線,設被圓截得的弦長為被圓截得的弦長為,問:是否為定值?如果是,請求出這個定值;如果不是,請說明理由.

(1)雙曲線的方程為;(2)是定值,且.

解析試題分析:(1)先利用拋物線的定義求出點的橫坐標,然后將點的橫坐標代入拋物線的方程并結合點所在的象限得到點的坐標,先計算出的長度,然后利用雙曲線的定義計算出的值,由確定的值,從而得到雙曲線的方程;(2)對直線的斜率存在與否分兩種情況討論,對直線的斜率不存在時進行驗證,在直線的斜率存在時,先假設直線的方程,然后根據直線的位置關系得到直線的方程,并求出圓心到兩直線的距離,根據圓的半徑長、直線截圓的弦長和圓心距三者之間的關系求出兩直線截圓的弦長,并進行驗證是否為定值.
試題解析:(1)∵拋物線的焦點為
∴雙曲線的焦點為,                  1分
在拋物線上,且
由拋物線的定義得,,∴,∴,∴,          3分
,                  4分
又∵點在雙曲線上,由雙曲線定義得:
,∴, ∴雙曲線的方程為:.            6分
(2)為定值.下面給出說明.
設圓的方程為:, ∵圓與直線相切,
∴圓的半徑為,故圓.             7分
顯然當直線的斜率不存在時不符合題意,                  8分
的方程為,即
的方程為,即
∴點到直線的距離為
到直線的距離為,                  10分
∴直線被圓截得的弦長, &n

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

設橢圓的左焦點為,離心率為,過點且與軸垂直的直線被橢圓截得的線段長為
(1)求橢圓方程;
(2)過點的直線與橢圓交于不同的兩點,當面積最大時,求

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,斜率為的直線過拋物線的焦點,與拋物線交于兩點A、B, M為拋物線弧AB上的動點.

(Ⅰ).若,求拋物線的方程;
(Ⅱ).求△ABM面積的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知平面內一動點P到點F(1,0)的距離與點P到y軸的距離的差等于1.
(Ⅰ)求動點P的軌跡C的方程;
(Ⅱ)過點F作兩條斜率存在且互相垂直的直線l1,l2,設l1與軌跡C相交于點A,B,l2與軌跡C相交于點D,E,求的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知橢圓,過點作圓的切線交橢圓于A,B兩點。
(1)求橢圓的焦點坐標和離心率;
(2)求的取值范圍;
(3)將表示為的函數,并求的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知橢圓的離心率為,直線與以原點為圓心、橢圓的短半軸長為半徑的圓相切.

(1)求橢圓的方程;
(2)如圖,是橢圓的頂點,是橢圓上除頂點外的任意點,直線軸于點,直線于點,設的斜率為的斜率為,求證:為定值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知曲線的參數方程為(為參數),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.
(Ⅰ)把的參數方程化為極坐標方程;
(Ⅱ)求交點的極坐標().

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,已知拋物線焦點為,直線經過點且與拋物線相交于兩點

(Ⅰ)若線段的中點在直線上,求直線的方程;
(Ⅱ)若線段,求直線的方程

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知橢圓的離心率為,以原點為圓心,橢圓的短半軸為半徑的圓與直線相切,直線與橢圓C相交于A、B兩點.
(Ⅰ)求橢圓C的方程;
(Ⅱ)求的取值范圍;

查看答案和解析>>

同步練習冊答案