已知兩點(diǎn)
、
,點(diǎn)
為坐標(biāo)平面內(nèi)的動(dòng)點(diǎn),滿足![]()
.
(1)求動(dòng)點(diǎn)
的軌跡方程;
(2)若點(diǎn)
是動(dòng)點(diǎn)
的軌跡上的一點(diǎn),
是
軸上的一動(dòng)點(diǎn),試討論直線
與圓![]()
的位置關(guān)系.
(1)動(dòng)點(diǎn)
的軌跡方程為
;(2)點(diǎn)
的縱坐標(biāo)為
.
解析試題分析:(1)設(shè)動(dòng)點(diǎn)
的坐標(biāo)為
,直接利用題中的條件列式并化簡,從而求出動(dòng)點(diǎn)
的軌跡方程;(2)先設(shè)點(diǎn)
,利用導(dǎo)數(shù)求出曲線
在點(diǎn)
和點(diǎn)
處的切線方程,并將兩切線方程聯(lián)立,求出交點(diǎn)
的坐標(biāo),利用兩切線垂直得到
,從而求出點(diǎn)
的縱坐標(biāo).
試題解析:(1)設(shè)
,則
,∵
,
∴
. 即
,即
,
所以動(dòng)點(diǎn)
的軌跡M的方程
. 4分
(2)設(shè)點(diǎn)
、
的坐標(biāo)分別為
、
,
∵
、
分別是拋物線
在點(diǎn)
、
處的切線,
∴直線
的斜率
,直線
的斜率
.
∵
,
∴
, 得
. ①
∵
、
是拋物線
上的點(diǎn),
∴![]()
∴直線
的方程為
,直線
的方程為
.
由
解得![]()
∴點(diǎn)
的縱坐標(biāo)為
.
考點(diǎn):1.動(dòng)點(diǎn)的軌跡方程;2.利用導(dǎo)數(shù)求切線方程;3.兩直線的位置關(guān)系;4.兩直線的交點(diǎn)
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題13分) 已知函數(shù)
(
為自然對數(shù)的底數(shù))。
(1)若
,求函數(shù)
的單調(diào)區(qū)間;
(2)是否存在實(shí)數(shù)
,使函數(shù)
在
上是單調(diào)增函數(shù)?若存在,求出
的值;若不存在,請說明理由。恒成立,則![]()
,又
,![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某連鎖分店銷售某種商品,每件商品的成本為
元,并且每件商品需向總店交
元的管理費(fèi),預(yù)計(jì)當(dāng)每件商品的售價(jià)為
元時(shí),一年的銷售量為
萬件.
(1)求該連鎖分店一年的利潤
(萬元)與每件商品的售價(jià)
的函數(shù)關(guān)系式
;
(2)當(dāng)每件商品的售價(jià)為多少元時(shí),該連鎖分店一年的利潤
最大,并求出
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
的圖象在與
軸交點(diǎn)處的切線方程是
.
(I)求函數(shù)
的解析式;
(II)設(shè)函數(shù)
,若
的極值存在,求實(shí)數(shù)
的取值范圍以及函數(shù)
取得極值時(shí)對應(yīng)的自變量
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
.![]()
(Ⅰ)若函數(shù)在區(qū)間
其中
上存在極值,求實(shí)數(shù)
的取值范圍;
(Ⅱ)如果當(dāng)
時(shí),不等式
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(
為實(shí)常數(shù)) .
(1)當(dāng)
時(shí),求函數(shù)
在
上的最大值及相應(yīng)的
值;
(2)當(dāng)
時(shí),討論方程
根的個(gè)數(shù).
(3)若
,且對任意的
,都有
,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
,
(
)
(1)若函數(shù)
存在極值點(diǎn),求實(shí)數(shù)b的取值范圍;
(2)求函數(shù)
的單調(diào)區(qū)間;
(3)當(dāng)
且
時(shí),令
,
(
),
(
)為曲線y=
上的兩動(dòng)點(diǎn),O為坐標(biāo)原點(diǎn),能否使得
是以O(shè)為直角頂點(diǎn)的直角三角形,且斜邊中點(diǎn)在y軸上?請說明理由
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(
).
(1)求
的單調(diào)區(qū)間;
⑵如果
是曲線
上的任意一點(diǎn),若以
為切點(diǎn)的切線的斜率
恒成立,求實(shí)數(shù)
的最小值;
⑶討論關(guān)于
的方程
的實(shí)根情況.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com