中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

已知函數.
(Ⅰ)求函數的極大值.
(Ⅱ)求證:存在,使
(Ⅲ)對于函數定義域內的任意實數x,若存在常數k,b,使得都成立,則稱直線為函數的分界線.試探究函數是否存在“分界線”?若存在,請給予證明,并求出k,b的值;若不存在,請說明理由.

(Ⅰ);(Ⅱ)詳見解析;(Ⅲ).

解析

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

設函數 (R),且該函數曲線處的切線與軸平行.
(Ⅰ)討論函數的單調性;
(Ⅱ)證明:當時,.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設函數
(1)求函數的極大值;
(2)記的導函數為,若時,恒有成立,試確定實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設函數F(x )=x2+aln(x+1)
(I)若函數y=f(x)在區間[1,+∞)上是單調遞增函數,求實數a的取值范圍;
(II)若函數y=f(x)有兩個極值點x1,x2,求證:.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數為常數),且在點處的切線平行于軸.
(Ⅰ)求實數的值;
(Ⅱ)求函數的單調區間.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設函數(Ⅰ)若函數上單調遞減,在區間單調遞增,求的值;
(Ⅱ)若函數上有兩個不同的極值點,求的取值范圍;
(Ⅲ)若方程有且只有三個不同的實根,求的取值范圍。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設函數   
(Ⅰ)若時有極值,求實數的值和的單調區間;
(Ⅱ)若在定義域上是增函數,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數, 
(1)求函數的單調區間;
(2)若函數上是減函數,求實數的最小值;
(3)若,使成立,求實數取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(1)討論函數的單調性;
(2)若函數的圖象在點處的切線的傾斜角為,對于任意的
 ,函數在區間 上總不是單調函數,
求實數的取值范圍;
(3)求證 

查看答案和解析>>

同步練習冊答案