中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
如圖,在四棱錐P—ABCD中,PA⊥底面ABCD,∠, AB∥CD,AD=CD=2AB=2,E,F分別是PC,CD的中點.
(Ⅰ)證明:CD⊥平面BEF;
(Ⅱ)設
k的值.
(Ⅰ)證明見解析(Ⅱ)
(Ⅰ)證明:.………………………2分
PA⊥平面ABCD,AD⊥CD. ……………………………………………3分
. ………………………………………5分
∴ CD⊥平面BEF. ……………………………………………………………………6分                          
(Ⅱ)連結AC且交BF于H,可知H是AC中點,連結EH,
由E是PC中點,得EH∥PA,  PA⊥平面ABCD.
得EH⊥平面ABCD,且EH.…………………………………………8分
作HM⊥BD于M,連結EM,由三垂線定理可得EM⊥BD.
故∠EMH為二面角E—BD—F的平面角,故∠EMH=600.……………………10分
∵ Rt△HBM∽Rt△DBF,
 故.
,   得.
在Rt△EHM中,  
………………………………………………………12分
解法2:(Ⅰ)證明,以A為原點,
建立如圖空間直角坐標系.

設PA = k,則,
,.………………………………………………………2分
.…………………………4分
………………6分
(Ⅱ)…7分     .
設平面BDE的一個法向量
   得  取……………10分                   由 ………………………………………11分
 …………………12分
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

如圖所示,四棱錐的底面為直角梯形,底面的中點.
(Ⅰ)求證:平面平面
(Ⅱ)求直線與平面所成的角;
(Ⅲ)求點到平面的距離.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖直棱柱ABC-A1B1C1中AB=,AC=3,BC=,D是A1C的中點E是側棱BB1上的一動點。
(1)當E是BB1的中點時,證明:DE//平面A1B1C1
(2)求的值
(3)在棱 BB1上是否存在點E,使二面角E-A1C-C是直二面角?若存在求的值,不存在則說明理由。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,幾何體ABCDE中,△ABC是正三角形,EA和DC都垂直于平面ABC,且EA=AB=2a,DC=a,F、G分別為EB和AB的中點.
(1)求證:FD∥平面ABC;
(2)求證:AF⊥BD;
(3) 求二面角B—FC—G的正切值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知四棱錐P-ABCD,底面是邊長為1的正方形,側棱PC長為2,且PC⊥底面ABCD,E是側棱PC上的動點。
(Ⅰ)不論點E在何位置,是否都有BD⊥AE?證明你的結論;
(Ⅱ)求點C到平面PDB的距離;
(Ⅲ)若點E為PC的中點,求二面角D-AE-B的大小.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,已知三棱柱ABC-A1B1C1的所有棱長都相等,且側棱垂直于底面,由
B沿棱柱側面經過棱C C1到點A1的最短路線長為,設這條最短路線與CC1的交
點為D.
(1)求三棱柱ABC-A1B1C1的體積;
(2)在平面A1BD內是否存在過點D的直線與平面ABC平行?證明你的判斷;
(3)證明:平面A1BD⊥平面A1ABB1

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,在正四棱臺內,以小底為底面。大底面中心為頂點作一內接棱錐. 已知棱臺小底面邊長為b,大底面邊長為a,并且棱臺的側面積與內接棱錐的側面面積相等,求這個棱錐的高,并指出有解的條件.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

在直三棱柱ABC—A1B1C1中,CA=CB=CC1=2,∠ACB=90°,E、F分別是BA、BC的中點,G是AA1上一點,且AC1⊥EG.
(Ⅰ)確定點G的位置;
(Ⅱ)求直線AC1與平面EFG所成角θ的大小.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

,解不等式.

查看答案和解析>>

同步練習冊答案