已知橢圓C:
(
)的短軸長(zhǎng)為2,離心率為
.
(1)求橢圓C的方程
(2)若過點(diǎn)M(2,0)的引斜率為
的直線與橢圓C相交于兩點(diǎn)G、H,設(shè)P為橢圓C上一點(diǎn),且滿足
(O為坐標(biāo)原點(diǎn)),當(dāng)
時(shí),求實(shí)數(shù)
的取值范圍?
(1)
;(2)
.
解析試題分析:(1)由題意知
,所以
,由此能求出橢圓C的方程;(2設(shè)直線方程為
,聯(lián)立直線方程與橢圓方程,再由根的判別式和嘏達(dá)定理進(jìn)行求解.
試題解析:(1)
.
(2)設(shè)直線
,聯(lián)立橢圓,
得
,
條件
轉(zhuǎn)換一下一下就是
,根據(jù)弦長(zhǎng)公式,得到
.
然后把
把P點(diǎn)的橫縱坐標(biāo)用
表示出來,
設(shè)
,其中要把
分別用直線代換,
最后還要根據(jù)根系關(guān)系把
消成
,得
.
然后代入橢圓,得到關(guān)系式
,
所以
,根據(jù)
利用已經(jīng)解的范圍得到
.
考點(diǎn):1.橢圓方程及幾何意義;2.直線與圓錐曲線的綜合問題;3.平面向量的坐標(biāo)運(yùn)算;4.平面向量的模.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知定點(diǎn)![]()
與分別在
軸、
軸上的動(dòng)點(diǎn)
滿足:
,動(dòng)點(diǎn)
滿足
.
(1)求動(dòng)點(diǎn)
的軌跡的方程;
(2)設(shè)過點(diǎn)
任作一直線與點(diǎn)
的軌跡交于
兩點(diǎn),直線
與直線
分別交于點(diǎn)
(
為坐標(biāo)原點(diǎn));
(i)試判斷直線
與以
為直徑的圓的位置關(guān)系;
(ii)探究
是否為定值?并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,橢圓
經(jīng)過點(diǎn)
,其左、右頂點(diǎn)分別是
、
,左、右焦點(diǎn)分別是
、
,
(異于
、
)是橢圓上的動(dòng)點(diǎn),連接
交直線
于
、
兩點(diǎn),若
成等比數(shù)列.![]()
(1)求此橢圓的離心率;
(2)求證:以線段
為直徑的圓過點(diǎn)
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線C:y2=2px(p>0)的焦點(diǎn)F和橢圓
的右焦點(diǎn)重合,直線
過點(diǎn)F交拋物線于A、B兩點(diǎn).
(1)求拋物線C的方程;
(2)若直線
交y軸于點(diǎn)M,且
,m、n是實(shí)數(shù),對(duì)于直線
,m+n是否為定值?
若是,求出m+n的值;否則,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓
的焦點(diǎn)在
軸上,離心率為
,對(duì)稱軸為坐標(biāo)軸,且經(jīng)過點(diǎn)
.
(1)求橢圓
的方程;
(2)直線
與橢圓
相交于
、
兩點(diǎn),
為原點(diǎn),在
、
上分別存在異于
點(diǎn)的點(diǎn)
、
,使得
在以
為直徑的圓外,求直線斜率
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系
中,點(diǎn)P到兩圓C1與C2的圓心的距離之和等于4,其中C1:
,C2:
. 設(shè)點(diǎn)P的軌跡為
.
(1)求C的方程;
(2)設(shè)直線
與C交于A,B兩點(diǎn).問k為何值時(shí)![]()
![]()
?此時(shí)
的值是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,橢圓C:
=1(a>b>0)的離心率為
,其左焦點(diǎn)到點(diǎn)P(2,1)的距離為
.不過原點(diǎn)O的直線l與C相交于A,B兩點(diǎn),且線段AB被直線OP平分.![]()
(1)求橢圓C的方程;
(2)求△ABP面積取最大值時(shí)直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線x2=4y的焦點(diǎn)為F,過焦點(diǎn)F且不平行于x軸的動(dòng)直線交拋物線于A、B兩點(diǎn),拋物線在A、B兩點(diǎn)處的切線交于點(diǎn)M.![]()
(1)求證:A、M、B三點(diǎn)的橫坐標(biāo)成等差數(shù)列;
(2)設(shè)直線MF交該拋物線于C、D兩點(diǎn),求四邊形ACBD面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
根據(jù)下列條件,求雙曲線方程.
(1)與雙曲線
=1有共同的漸近線,且過點(diǎn)(-3,2
);
(2)與雙曲線
=1有公共焦點(diǎn),且過點(diǎn)(3
,2).
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com