已知橢圓
的中心在坐標原點,右準線為
,離心率為
.若直線
與橢圓
交于不同的兩點
、
,以線段
為直徑作圓
.
(1)求橢圓
的標準方程;
(2)若圓
與
軸相切,求圓
被直線
截得的線段長.
(1)
;(2)
.
解析試題分析:(1)先根據題中的條件確定
、
的值,然后利用
求出
的值,從而確定橢圓
的方程;(2)先確定點
的坐標,求出圓
的方程,然后利用點(圓心)到直線的距離求出弦心距,最后利用勾股定理求出直線截圓所得的弦長.
試題解析:(1)設橢圓的方程為
,由題意知
,
,解得
,
則
,
,故橢圓
的標準方程為
5分
(2)由題意可知,點
為線段
的中點,且位于
軸正半軸,
又圓
與
軸相切,故點
的坐標為
,
不妨設點
位于第一象限,因為
,所以
, 7分
代入橢圓的方程,可得
,因為
,解得
, 10分
所以圓
的圓心為
,半徑為
,其方程為
12分
因為圓心
到直線
的距離
14分
故圓
被直線
截得的線段長為
16分
考點:橢圓的方程、點到直線的距離、勾股定理
科目:高中數學 來源: 題型:解答題
已知橢圓C的中心在坐標原點,焦點在x軸上,左、右焦點分別為F1,F2,且|F1F2|=2,點P(1,
)在橢圓C上.![]()
(I)求橢圓C的方程;
(II)如圖,動直線
:
與橢圓C有且僅有一個公共點,點M,N是直線l上的兩點,且
,
,四邊形
面積S的求最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓
方程為
,過右焦點斜率為1的直線到原點的距離為
.![]()
(1)求橢圓方程.
(2)已知
為橢圓的左右兩個頂點,
為橢圓在第一象限內的一點,
為過點
且垂直
軸的直線,點
為直線
與直線
的交點,點
為以
為直徑的圓與直線
的一個交點,求證:
三點共線.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,在平面直角坐標系
中,
、
分別是橢圓
的頂點,過坐標原點的直線交橢圓于
、
兩點,其中
在第一象限.過
作
軸的垂線,垂足為
.連接
,并延長交橢圓于點
.設直線
的斜率為
.![]()
(Ⅰ)當直線
平分線段
時,求
的值;
(Ⅱ)當
時,求點
到直線
的距離;
(Ⅲ)對任意
,求證:
.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,過拋物線
的對稱軸上任一點
作直線與拋物線交于
、
兩點,點Q是點P關于原點的對稱點.![]()
(1)設
,證明:
;
(2)設直線AB的方程是
,過
、
兩點的圓C與拋物線在點A處有共同的切線,求圓C的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓C:
+
=1(a>b>0)的離心率為
,過右焦點F的直線l與C相交于A、B兩點,當l的斜率為1時,坐標原點O到l的距離為
.
(Ⅰ)求a,b的值;
(Ⅱ)C上是否存在點P,使得當l繞F轉到某一位置時,有
=
+
成立?若存在,求出所有的P的坐標與l的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知
為拋物線
的焦點,拋物線上點
滿足![]()
![]()
(Ⅰ)求拋物線
的方程;
(Ⅱ)
點的坐標為(
,
),過點F作斜率為
的直線與拋物線交于
、
兩點,
、
兩點的橫坐標均不為
,連結
、
并延長交拋物線于
、
兩點,設直線
的斜率為
,問
是否為定值,若是求出該定值,若不是說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
經過點
且與直線
相切的動圓的圓心軌跡為
.點
、
在軌跡
上,且關于
軸對稱,過線段
(兩端點除外)上的任意一點作直線
,使直線
與軌跡
在點
處的切線平行,設直線
與軌跡
交于點
、
.
(1)求軌跡
的方程;
(2)證明:
;
(3)若點
到直線
的距離等于
,且△
的面積為20,求直線
的方程.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com