中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
設A,B兩城相距100km,在兩城市之間距A城xkm處的D處建一個發電廠給A,B兩城市供電.為了城市環保,發電廠與城市的距離不得小于40km,已知供電費用(元)與供電距離(km)的平方和供電量(億度)之積成正比,比例系數λ=0.9.若A城的供電量為20億度/月,B城供電量為10億度/月.
(1)將月供電總費用y(元)表示成x(km)的函數,并求其定義域;
(2)發電廠建在距A城多遠處,才能使供電費用最少?并求出供電費用的最小值.
分析:(1)由已知中發電廠與城市的距離不得小于40km,A、B兩座城市相距100km,我們易求出求x的范圍,由已知中供電費用與“供電距離的平方與供電量之積”成正比,比例系數k=0.9,若A城市供電量為20億度/月,B城市為10億度/月,結合x的取值范圍,即可得到月供電總費用y表示成x的函數;
(2)由(1)所得的函數解析式,結合二次函數性質,先進行配方,開口向上,對稱軸為
100
3
不在定義域內,根據函數的單調性可知當x=40米時,y最小.
解答:解:(1)∵發電廠與城市的距離不得小于40km,又∵A,B兩城相距100km,
∴x的取值范圍為40≤x≤60;
∵供電費用(元)與供電距離(km)的平方和供電量(億度)之積成正比,比例系數λ=0.9,
又∵A城的供電量為20億度/月,B城供電量為10億度/月
∴y=0.9×20×x2+0.9×10×(100-x)2
化簡得:y=27x2-1800x+90000(40≤x≤60);
(2)由y=27x2-1800x+90000=27(x-
100
3
)2
+60000.
因為對稱軸x=
100
3
不在定義域內
則二次函數在[40,60]上單調遞增
所以當x=40米時,y最。
答:故當發電站建在距A城40千米時,才能使供電總費用最小,最小值為61200元.
點評:本題考查的知識點是根據實際問題選擇函數類型,二次函數的性質,其中在利用函數數學模型解答實際問題時,定義域(自變量x的取值范圍)是易忽略而致錯的點.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

設A,B兩城相距100km,在兩城市之間距A城xkm處的D處建一個發電廠給A,B兩城市供電.為了城市環保,發電廠與城市的距離不得小于40km,已知供電費用(元)與供電距離(km)的平方和供電量(億度)之積成正比,比例系數λ=0.9.若A城的供電量為20億度/月,B城供電量為10億度/月.
(1)將月供電總費用y(元)表示成x(km)的函數,并求其定義域;
(2)發電廠建在距A城多遠處,才能使供電費用最少?并求出供電費用的最小值.

查看答案和解析>>

科目:高中數學 來源:2008-2009學年北京師大附屬實驗中學高一(上)期中數學試卷(解析版) 題型:解答題

設A,B兩城相距100km,在兩城市之間距A城xkm處的D處建一個發電廠給A,B兩城市供電.為了城市環保,發電廠與城市的距離不得小于40km,已知供電費用(元)與供電距離(km)的平方和供電量(億度)之積成正比,比例系數λ=0.9.若A城的供電量為20億度/月,B城供電量為10億度/月.
(1)將月供電總費用y(元)表示成x(km)的函數,并求其定義域;
(2)發電廠建在距A城多遠處,才能使供電費用最少?并求出供電費用的最小值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

設A,B兩城相距100km,在兩城市之間距A城xkm處的D處建一個發電廠給A,B兩城市供電.為了城市環保,發電廠與城市的距離不得小于40km,已知供電費用(元)與供電距離(km)的平方和供電量(億度)之積成正比,比例系數λ=0.9.若A城的供電量為20億度/月,B城供電量為10億度/月.
(1)將月供電總費用y(元)表示成x(km)的函數,并求其定義域;
(2)發電廠建在距A城多遠處,才能使供電費用最少?并求出供電費用的最小值.

查看答案和解析>>

同步練習冊答案