如圖,點
是橢圓
的一個頂點,
的長軸是圓
的直徑,
、
是過點
且互相垂直的兩條直線,其中
交圓
于
、
兩點,
交橢圓
于另一點
.![]()
(1)求橢圓
的方程;
(2)求
面積的最大值及取得最大值時直線
的方程.
(1)
;當直線
的方程為
時,
的面積取最大值
.
解析試題分析:(1)首先根據(jù)題中條件求出
和
的值,進而求出橢圓
的方程;(2)先設(shè)直線
的方程為
,先利用弦心距、半徑長以及弦長之間滿足的關(guān)系(勾股定理)求出直線
截圓
所得的弦長
,然后根據(jù)直線
與
兩者所滿足的垂直關(guān)系設(shè)直線
,將直線
的方程與橢圓的方程聯(lián)立,求出直線
截橢圓
的弦長
,然后求出
的面積的表達式,并利用基本不等式求出
的面積的最大值,并求出此時直線
的方程.
試題解析:(1)由題意得
,
橢圓
的方程為
;
(2)設(shè)
、
、
,
由題意知直線
的斜率存在,不妨設(shè)其為
,則直線
的方程為
,
故點
到直線
的距離為
,又圓
,
,
又
,
直線
的方程為
,
由
,消去
,整理得
,
故
,代入
的方程得![]()
,
設(shè)
的面積為
,則
,
,
當且僅當
,即
時上式取等號,
當
時,
的面積取得最大值
,
此時直線
的方程為![]()
考點:1.橢圓的方程;2.直線與圓、橢圓的位置關(guān)系;3.基本不等式
科目:高中數(shù)學(xué) 來源: 題型:解答題
給定橢圓
.稱圓心在原點O,半徑為
的圓是橢圓C的“準圓”.若橢圓C的一個焦點為
,其短軸上的一個端點到F的距離為
.
(1)求橢圓C的方程和其“準圓”方程;
(2)點P是橢圓C的“準圓”上的一個動點,過動點P作直線
,使得
與橢圓C都只有一個交點,試判斷
是否垂直?并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知雙曲線的中心在原點,離心率為2,一個焦點為F(-2,0).
(1)求雙曲線方程;
(2)設(shè)Q是雙曲線上一點,且過點F,Q的直線l與y軸交于點M,若
= 2
,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線
的準線與x軸交于點M,過點M作圓
的兩條切線,切點為A、B,
.
(1)求拋物線E的方程;
(2)過拋物線E上的點N作圓C的兩條切線,切點分別為P、Q,若P,Q,O(O為原點)三點共線,求點N的坐標.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓
過點
,且離心率為
.斜率為
的直線
與橢圓
交于A、B兩點,以
為底邊作等腰三角形,頂點為
.
(1)求橢圓
的方程;
(2)求△
的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知定點![]()
與分別在
軸、
軸上的動點
滿足:
,動點
滿足
.
(1)求動點
的軌跡的方程;
(2)設(shè)過點
任作一直線與點
的軌跡交于
兩點,直線
與直線
分別交于點
(
為坐標原點);
(i)試判斷直線
與以
為直徑的圓的位置關(guān)系;
(ii)探究
是否為定值?并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓
的左右焦點分別為
、
,短軸兩個端點為
、
,且四邊形
是邊長為2的正方形.
(1)求橢圓方程;
(2)若
分別是橢圓長軸的左右端點,動點
滿足
,連接
,交橢圓于點
,證明:
為定值;
(3)在(2)的條件下,試問
軸上是否存在異于點
的定點
,使得以
為直徑的圓恒過直線
的交點?若存在,求出點Q的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知橢圓E:
的離心率為
,過左焦點
且斜率為
的直線交橢圓E于A,B兩點,線段AB的中點為M,直線
:
交橢圓E于C,D兩點.![]()
(1)求橢圓E的方程;
(2)求證:點M在直線
上;
(3)是否存在實數(shù)k,使得三角形BDM的面積是三角形ACM的3倍?若存在,求出k的值;
若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓
的焦點在
軸上,離心率為
,對稱軸為坐標軸,且經(jīng)過點
.
(1)求橢圓
的方程;
(2)直線
與橢圓
相交于
、
兩點,
為原點,在
、
上分別存在異于
點的點
、
,使得
在以
為直徑的圓外,求直線斜率
的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com