中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

在如圖所示的多面體ABCDE中,AB⊥平面ACD,DE⊥平面ACD,AC=AD=CD=DE=2,AB=1,G為AD中點.

(1)請在線段CE上找到點F的位置,使得恰有直線BF∥平面ACD,并證明這一事實;
(2)求平面BCE與平面ACD所成銳二面角的大小;
(3)求點G到平面BCE的距離.

(1)點F應(yīng)是線段CE的中點(2)(3)

解析試題分析:解法一:以D點為原點建立如圖所示的空間直角坐標(biāo)系,使得x軸和z軸的正半軸分別經(jīng)過點A和點E,則各點的坐標(biāo)為D(0,0,0),A(2,0,0),E(0,0,2),
B(2,0,1),
(1)點F應(yīng)是線段CE的中點,下面證明:

設(shè)F是線段CE的中點,則點F的坐標(biāo)為
,取平面ACD的法向量
,∴BF∥平面ACD;    
(2)設(shè)平面BCE的法向量為,則,且

,不妨設(shè),則,即
∴所求角θ滿足,∴;    
(3)由已知G點坐標(biāo)為(1,0,0),∴
由(2)平面BCE的法向量為,∴所求距離.                      
解法二:(1)由已知AB⊥平面ACD,DE⊥平面ACD,∴AB∥ED,

設(shè)F為線段CE的中點,H是線段CD的中點,連接FH,則FH∥=
∴FH∥=AB,∴四邊形ABFH是平行四邊形,∴BF∥AH,
由BF?平面ACD內(nèi),AH?平面ACD,∴BF∥平面ACD;
(2)由已知條件可知△ACD即為△BCE在平面ACD上的射影,
設(shè)所求的二面角的大小為θ,則
易求得BC=BE=,CE=,∴
,∴,而,∴;        
(3)連接BG、CG、EG,得三棱錐C﹣BGE,由ED⊥平面ACD,∴平面ABED⊥平面ACD,又CG⊥AD,∴CG⊥平面ABED,設(shè)G點到平面BCE的距離為h,則VC﹣BGE=VG﹣BCE,由
即為點G到平面BCE的距離.
考點:空間幾何體線面平行的判定二面角點面距的計算
點評:當(dāng)已知條件中出現(xiàn)了從同一點出發(fā)的三線兩兩垂直或可以平移為三線兩兩垂直時,常利用空間向量求解,只需寫出各點坐標(biāo)代入相應(yīng)公式即可

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在四棱錐中,底面是矩形,側(cè)棱⊥底面的中點,的中點.

(1)證明:平面
(2)若為直線上任意一點,求幾何體的體積;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

本題共有2個小題,第(1)小題滿分6分,第(2)小題滿分6分.
如圖,已知正四棱柱的底面邊長是,體積是分別是棱的中點.

(1)求直線與平面所成的角(結(jié)果用反三角函數(shù)表示);
(2)求過的平面與該正四棱柱所截得的多面體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知四棱柱的底面是邊長為1的正方形,側(cè)棱垂直底邊ABCD四棱柱,
E是側(cè)棱AA1的中點,求

(1)求異面直線與B1E所成角的大小;
(2)求四面體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)如圖,直角梯形與等腰直角三角形所在的平面互相垂直.

(1)求直線與平面所成角的正弦值;
(2)線段上是否存在點,使// 平面?若存在,求出;若不存在,說明理由.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖一,△ABC是正三角形,△ABD是等腰直角三角形,AB=BD=2。將△ABD沿邊AB折起, 使得△ABD與△ABC成直二面角,如圖二,在二面角中.

(1)求證:BD⊥AC;
(2)求D、C之間的距離;
(3)求DC與面ABD成的角的正弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在正三棱柱中,的中點,是線段上的動點(與端點不重合),且.

(1)若,求證:;
(2)若直線與平面所成角的大小為,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,正方形與梯形所在的平面互相垂直,,,點在線段上.

(I)當(dāng)點中點時,求證:∥平面
(II)當(dāng)平面與平面所成銳二面角的余弦值為時,求三棱錐 的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,三棱錐P-ABC中,PC平面ABC,PC=AC=2, AB=BC,D是PB上一點,且CD平面PAB

(1)求證:AB平面PCB;
(2)求異面直線AP與BC所成角的大小;
(3)求二面角C-PA-B 的大小的余弦值。

查看答案和解析>>

同步練習(xí)冊答案