中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

已知函數,其中是自然對數的底數,.
(Ⅰ)求函數的單調區間;
(Ⅱ)當時,求函數的最小值.

(Ⅰ)的單調減區間為;單調增區間為;(Ⅱ)

解析試題分析:(Ⅰ)先求導函數,得,令,得遞增區間為;令,得遞減區間為;(Ⅱ)令,得,討論與區間的位置關系,當,或時,函數單調,利用單調性求最值;當,將定義域分段,分別判斷導函數符號,得單調區間,判斷函數的值圖像,從而求得最值.
試題解析:(Ⅰ)解:因為,所以
,得.當變化時,的變化情況如下:











 

的單調減區間為;單調增區間為
(Ⅱ)解:由(Ⅰ),得的單調減區間為;單調增區間為
所以當,即時,上單調遞增,
上的最小值為
,即時,
上單調遞減,

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知函數的圖像在點處的切線斜率為10.
(1)求實數的值;
(2)判斷方程根的個數,并證明你的結論;
(21)探究: 是否存在這樣的點,使得曲線在該點附近的左、右兩部分分別位于曲線在該點處切線的兩側? 若存在,求出點A的坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,其中.
(Ⅰ)若,求函數的極值點;
(Ⅱ)若在區間內單調遞增,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,現要在邊長為的正方形內建一個交通“環島”.正方形的四個頂點為圓心在四個角分別建半徑為不小于)的扇形花壇,以正方形的中心為圓心建一個半徑為的圓形草地.為了保證道路暢通,島口寬不小于,繞島行駛的路寬均不小于.

(1)求的取值范圍;(運算中
(2)若中間草地的造價為,四個花壇的造價為,其余區域的造價為,當取何值時,可使“環島”的整體造價最低?

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知a,b為常數,a¹0,函數
(1)若a=2,b=1,求在(0,+∞)內的極值;
(2)①若a>0,b>0,求證:在區間[1,2]上是增函數;
②若,且在區間[1,2]上是增函數,求由所有點形成的平面區域的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數(其中為常數);
(Ⅰ)如果函數有相同的極值點,求的值;
(Ⅱ)設,問是否存在,使得,若存在,請求出實數的取值范圍;若不存在,請說明理由.
(Ⅲ)記函數,若函數有5個不同的零點,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數為常數),其圖象是曲線
(1)當時,求函數的單調減區間;
(2)設函數的導函數為,若存在唯一的實數,使得同時成立,求實數的取值范圍;
(3)已知點為曲線上的動點,在點處作曲線的切線與曲線交于另一點,在點處作曲線的切線,設切線的斜率分別為.問:是否存在常數,使得?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,其中為常數.
(Ⅰ)若函數是區間上的增函數,求實數的取值范圍;
(Ⅱ)若時恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知
(1)曲線y=f(x)在x=0處的切線恰與直線垂直,求的值;
(2)若x∈[a,2a]求f(x)的最大值;
(3)若f(x1)=f(x2)=0(x1<x2),求證:

查看答案和解析>>

同步練習冊答案