中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
求由曲線y=x2+2,x+y=4所圍成的封閉圖形的面積.
【答案】分析:先聯立方程,組成方程組,求得交點坐標,可得被積區間,再用定積分表示出曲線y=x2+2,x+y=4所圍成的封閉圖形的面積,即可求得結論.
解答:解:如圖,

由曲線y=x2+2,x+y=4所圍成的封閉圖形的面積
S=…(8分)
點評:本題考查利用定積分求面積,解題的關鍵是確定被積區間及被積函數.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

求由曲線y=x2+2與y=3x,x=0,x=2所圍成的平面圖形的面積.
精英家教網

查看答案和解析>>

科目:高中數學 來源: 題型:

求由曲線y=x2+2,x+y=4所圍成的封閉圖形的面積.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

求由曲線y=x2+2與y=3x,x=0,x=2所圍成的平面圖形的面積.

精英家教網

查看答案和解析>>

科目:高中數學 來源:2010-2011學年江蘇省南通市馬塘中學高二(下)第一次月考數學試卷(選修2-2)(解析版) 題型:解答題

求由曲線y=x2+2與y=3x,x=0,x=2所圍成的平面圖形的面積.

查看答案和解析>>

同步練習冊答案