已知二次函數(shù)f(x)=ax2+bx,f(x+1)為偶函數(shù),函數(shù)f(x)的圖象與直線y=x相切.
(I)求f(x)的解析式;
(II)已知k的取值范圍為[
,+∞),則是否存在區(qū)間[m,n](m<n),使得f(x)在區(qū)間[m,n]上的值域恰好為[km,kn]?若存在,請(qǐng)求出區(qū)間[m,n];若不存在,請(qǐng)說(shuō)明理由.
解:(1)∵f(x+1)為偶函數(shù),∴f(-x+1)=f(x+1),
即a(-x+1)2+b(-x+1)=a(x+1)2+b(x+1)恒成立,
即(2a+b)x=0恒成立,∴2a+b=0,∴b=-2a,∴f(x)=ax2-2ax,
∵函數(shù)f(x)的圖象與直線y=x相切,
∴二次方程ax2-(2a+1)x=0有兩相等實(shí)數(shù)根,∴Δ=(2a+1)2-4a×0=0,
∴a=
,f(x)=-
x2+x. ......5分
(2)∵f(x)=-
(x-1)2+
≤
,
∴[km,kn]⊆(-∞,
],∴kn≤
,又k≥
,∴n≤
≤
,
又[m,n]⊆ (-∞,1],f(x)在[m,n]上是單調(diào)增函數(shù),
即-![]()
即m,n為方程-
x2+x=kx的兩根,解得x1=0,x2=2-2k.∵m<n且k≥
.
故當(dāng)
≤k<1時(shí),[m,n]="[0,2-2k];" 當(dāng)k>1時(shí),[m,n]=[2-2k,0]; 當(dāng)k=1時(shí),[m,n]不存在.
解析
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
汽車和自行車分別從
地和
地同時(shí)開(kāi)出,如下圖,各沿箭頭方向(兩方向垂直)勻速前進(jìn),汽車和自行車的速度分別是10米/秒和5米/秒,已知
米.(汽車開(kāi)到
地即停止)
(Ⅰ)經(jīng)過(guò)
秒后,汽車到達(dá)
處,自行車到達(dá)
處,設(shè)
間距離為
,試寫出
關(guān)于
的函數(shù)關(guān)系式,并求其定義域.
(Ⅱ)經(jīng)過(guò)多少時(shí)間后,汽車和自行車之間的距離最短?最短距離是多少?![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(12分)某企業(yè)擬在2012年度進(jìn)行一系列促銷活動(dòng),已知某產(chǎn)品年銷量x萬(wàn)件與年促銷費(fèi)用t萬(wàn)元之間滿足3-x與t+1成反比例,當(dāng)年促銷費(fèi)用t=0萬(wàn)元時(shí),年銷量是1萬(wàn)件,已知2012年產(chǎn)品的設(shè)備折舊、維修等固定費(fèi)用為3萬(wàn)元,每生產(chǎn)1萬(wàn)件產(chǎn)品需再投入32萬(wàn)元的生產(chǎn)費(fèi)用。若將每件產(chǎn)品售價(jià)定為:其生產(chǎn)成本的150%與“平均每件促銷費(fèi)的一半”之和,則當(dāng)年生產(chǎn)的商
(1)將2012年的利潤(rùn)y(萬(wàn)元)表示為促銷費(fèi)t(萬(wàn)元)的函數(shù)
(2)該企業(yè)2012年的促銷費(fèi)投入多少萬(wàn)元時(shí),企業(yè)年利潤(rùn)最大?(注:利潤(rùn)=銷售收入-生產(chǎn)成
本-促銷費(fèi),生產(chǎn)成本=固定費(fèi)用+生產(chǎn)費(fèi)用)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
函數(shù)
的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/52/e/jakbr1.png" style="vertical-align:middle;" />,且滿足對(duì)于任意
,有
.
⑴求
的值;
⑵判斷
的奇偶性并證明;
⑶如果
≤
,且
在
上是增函數(shù),求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
.(本小題滿分12分)
某服裝廠生產(chǎn)一種服裝,每件服裝的成本為40元,出廠單價(jià)定為60元.該廠為鼓勵(lì)銷售商訂購(gòu),決定當(dāng)一次訂購(gòu)量超過(guò)100件時(shí),每多訂購(gòu)一件,訂購(gòu)的全部服裝的出廠單價(jià)就降低0.02元.根據(jù)市場(chǎng)調(diào)查,銷售商一次訂購(gòu)量不會(huì)超過(guò)500件.
(1)設(shè)一次訂購(gòu)量為x件,服裝的實(shí)際出廠單價(jià)為P元,寫出函數(shù)P=f(x)的表達(dá)式;
(2)當(dāng)銷售商一次訂購(gòu)多少件時(shí),該服裝廠獲得的利潤(rùn)最大,最大利潤(rùn)是多少元?
(服裝廠售出一件服裝的利潤(rùn)=實(shí)際出廠單價(jià)
成本)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
(
為實(shí)數(shù),
,
).
(1)當(dāng)函數(shù)
的圖像過(guò)點(diǎn)
,且方程
有且只有一個(gè)根,求
的表達(dá)式;
(2)若
當(dāng)
,
,
,且函數(shù)
為偶函數(shù)時(shí),試判斷
能否大于
?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分14分)已知
是二次函數(shù),不等式
的解集是
,且
在區(qū)間
上的最大值是
.
(1)求
的解析式;
(2)設(shè)函數(shù)
在
上的最小值為
,求
的表達(dá)式.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com