如圖,已知拋物線(xiàn)
的焦點(diǎn)在拋物線(xiàn)
上.![]()
(Ⅰ)求拋物線(xiàn)
的方程及其準(zhǔn)線(xiàn)方程;
(Ⅱ)過(guò)拋物線(xiàn)
上的動(dòng)點(diǎn)
作拋物線(xiàn)
的兩條切線(xiàn)
、
, 切點(diǎn)為
、
.若
、
的斜率乘積為
,且
,求
的取值范圍.
(1)
,其準(zhǔn)線(xiàn)方程為
.
(2) ![]()
解析試題分析:解:(Ⅰ)
的焦點(diǎn)為
,所以
,
.
故
的方程為
,其準(zhǔn)線(xiàn)方程為
. 6分
(Ⅱ)任取點(diǎn)
,設(shè)過(guò)點(diǎn)P的
的切線(xiàn)方程為
.
由
,得
.
由
,化簡(jiǎn)得
, 9分
記
斜率分別為
,則
,
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/0d/3/3q5fm1.png" style="vertical-align:middle;" />,所以
12分
所以
,
所以
. 14分
考點(diǎn):拋物線(xiàn)的方程以及性質(zhì)
點(diǎn)評(píng):主要是考查了拋物線(xiàn)的性質(zhì)以及直線(xiàn)與拋物線(xiàn)的位置關(guān)系的運(yùn)用,屬于中檔題。
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)拋物線(xiàn)C:
的焦點(diǎn)為F,經(jīng)過(guò)點(diǎn)F的直線(xiàn)與拋物線(xiàn)交于A、B兩點(diǎn).
(1)若
,求線(xiàn)段
中點(diǎn)M的軌跡方程;
(2)若直線(xiàn)AB的方向向量為
,當(dāng)焦點(diǎn)為
時(shí),求
的面積;
(3)若M是拋物線(xiàn)C準(zhǔn)線(xiàn)上的點(diǎn),求證:直線(xiàn)
的斜率成等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
平面內(nèi)動(dòng)點(diǎn)
到點(diǎn)
的距離等于它到直線(xiàn)
的距離,記點(diǎn)
的軌跡為曲
.
(Ⅰ)求曲線(xiàn)
的方程;
(Ⅱ)若點(diǎn)
,
,
是
上的不同三點(diǎn),且滿(mǎn)足
.證明:
不可能為直角三角形.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在矩形
中,
分別為四邊的中點(diǎn),且都在坐標(biāo)軸上,設(shè)
,
.![]()
(Ⅰ)求直線(xiàn)
與
的交點(diǎn)
的軌跡
的方程;
(Ⅱ)過(guò)圓![]()
上一點(diǎn)
作圓的切線(xiàn)與軌跡
交于
兩點(diǎn),若
,試求出
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓C:的長(zhǎng)軸長(zhǎng)為
,離心率
.
Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
Ⅱ)若過(guò)點(diǎn)B(2,0)的直線(xiàn)
(斜率不等于零)與橢圓C交于不同的兩點(diǎn)E,F(xiàn)(E在B,F(xiàn)之間),且
OBE與
OBF的面積之比為
,求直線(xiàn)
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
過(guò)直線(xiàn)y=﹣1上的動(dòng)點(diǎn)A(a,﹣1)作拋物線(xiàn)y=x2的兩切線(xiàn)AP,AQ,P,Q為切點(diǎn).
(1)若切線(xiàn)AP,AQ的斜率分別為k1,k2,求證:k1•k2為定值.
(2)求證:直線(xiàn)PQ過(guò)定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知點(diǎn)
是離心率為
的橢圓
:
上的一點(diǎn),斜率為
的直線(xiàn)
交橢圓
于
、
兩點(diǎn),且
、
、
三點(diǎn)不重合.
(1)求橢圓
的方程;
(2)
的面積是否存在最大值?若存在,求出這個(gè)最大值;若不存在,請(qǐng)說(shuō)明理由?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,拋物線(xiàn)
的焦點(diǎn)為F,準(zhǔn)線(xiàn)
與x軸的交點(diǎn)為A.點(diǎn)C在拋物線(xiàn)E上,以C為圓心,
為半徑作圓,設(shè)圓C與準(zhǔn)線(xiàn)
交于不同的兩點(diǎn)M,N.![]()
(I)若點(diǎn)C的縱坐標(biāo)為2,求
;
(II)若
,求圓C的半徑.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com