中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

已知二次函數,且不等式的解集為.
(1)方程有兩個相等的實根,求的解析式;
(2)的最小值不大于,求實數的取值范圍;
(3)如何取值時,函數存在零點,并求出零點.

(1);(2)實數的取值范圍是;(3)詳見解析.

解析試題分析:(1)根據不等式的解集為得到為方程的實根,結合韋達定理確定之間的等量關系以及這一條件,然后利用有兩個相等的實根得到,從而求出的值,最終得到函數的解析式;(2)在的條件下,利用二次函數的最值公式求二次函數的最小值,然后利用已知條件列有關參數的不等式,進而求解實數;(3)先求出函數的解析式,對首項系數為零與不為零進行兩種情況的分類討論,在首項系數為零的前提下,直接將代入函數解析式,求處對應的零點;在首項系數不為零的前提下,求出
的符號進行三中情況討論,從而確定函數的零點個數,并求出相應的零點.
試題解析:(1)由于不等式的解集為
即不等式的解集為
為方程的兩根,且
由韋達定理得
由于方程有兩個相等的實根,即方程有兩個相等的實根,

由于,解得
所以
(2)由題意知,,由于,則有
解得,由于,所以,即實數的取值范圍是
(3)(※)
①當時,方程為,方程有唯一實根
即函數有唯一零點
②當時,
方程(※)有一解,令
,即
(i)當時,(負根舍去)),
函數有唯一零點
(ii)當

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知函數f(x)=x2+4ax+2a+6.
(1)若函數f(x)的值域為[0,+∞),求a的值;
(2)若函數f(x)的函數值均為非負數,求g(a)=2-a|a+3|的值域.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

某商場銷售某種商品的經驗表明,該商品每日的銷售量(單位:千克)與銷售價格(單位:元/千克)滿足關系式,其中為常數.已知銷售價格為5元/千克時,每日可售出該商品11千克.
(Ⅰ)求的值;
(Ⅱ)若該商品的成本為3元/千克,試確定銷售價格的值,使商場每日銷售該商品所獲得的利潤最大.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(I)求函數的最小值;
(II)對于函數定義域內的任意實數,若存在常數,使得不等式都成立,則稱直線是函數的“分界線”.
設函數,試問函數是否存在“分界線”?若存在,求出“分界線”的方程.若不存在請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

漁場中魚群的最大養殖量是m噸,為保證魚群的生長空間,實際養殖量不能達到最大養殖量,必須留出適當的空閑量。已知魚群的年增長量y噸和實際養殖量x噸與空閑率乘積成正比,比例系數為k(k>0).
寫出y關于x的函數關系式,指出這個函數的定義域;
求魚群年增長量的最大值;
當魚群的年增長量達到最大值時,求k的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知f(x)=在區間[-1,1]上是增函數.
(Ⅰ)求實數a的值組成的集合A;
(Ⅱ)設關于x的方程f(x)=的兩個非零實根為x1、x2.試問:是否存在實數m,使得不等式m2+tm+1≥|x1-x2|對任意a∈A及t∈[-1,1]恒成立?若存在,求m的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(Ⅰ)已知函數,若存在,使得,則稱是函數的一個不動點,設二次函數.
(Ⅰ) 當時,求函數的不動點;
(Ⅱ) 若對于任意實數,函數恒有兩個不同的不動點,求實數的取值范圍;
(Ⅲ) 在(Ⅱ)的條件下,若函數的圖象上兩點的橫坐標是函數的不動點,且直線是線段的垂直平分線,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

某單位設計的兩種密封玻璃窗如圖所示:圖1是單層玻璃,厚度為8 mm;圖2是雙層中空玻璃,厚度均為4 mm,中間留有厚度為的空氣隔層.根據熱傳導知識,對于厚度為的均勻介質,兩側的溫度差為,單位時間內,在單位面積上通過的熱量,其中為熱傳導系數.假定單位時間內,在單位面積上通過每一層玻璃及空氣隔層的熱量相等.(注:玻璃的熱傳導系數為,空氣的熱傳導系數為.)

(1)設室內,室外溫度均分別為,內層玻璃外側溫度為,外層玻璃內側溫度為,且.試分別求出單層玻璃和雙層中空玻璃單位時間內,在單位面積上通過的熱量(結果用表示);
(2)為使雙層中空玻璃單位時間內,在單位面積上通過的熱量只有單層玻璃的4%,應如何設計的大小?

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

為了在夏季降溫和冬季供暖時減少能源損耗,房屋的房頂和外墻需要建造隔熱層,某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬元,該建筑物每年的能源消耗費用為C(單位:萬元)與隔熱層厚度x(單位:cm)滿足關系:C(x)=(0x10),若不建隔熱層,每年能源消耗費用為8萬元。設f(x)為隔熱層建造費用與20年的能源消耗費用之和。
(1)求k的值及f(x)的表達式;
(2)隔熱層修建多厚時,總費用f(x)達到最小,并求最小值。

查看答案和解析>>