中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

在邊長為的正方形鐵皮的四切去相等的正方形,再把它的邊沿虛線折起,做成一個無蓋的方底箱子,箱底的邊長是多少時,箱子的容積最大?最大容積是多少?

當箱底邊長為時,箱子容積最大,最大容積是.

解析試題分析:設箱底邊長為,則無蓋的方底箱子的高,其體積為,從而可得,通過求導,討論導數的正負得函數的增減性,根據函數的單調性可求體積的最大值.
試題解析:設箱底邊長為,則無蓋的方底箱子的高,其體積為
 
,得,解得(舍去)
時,;當時,
所以時,單調遞增;時,單調遞減,所以函數時取得極大值, 結合實際情況,這個極大值就是函數的最大值.
故當箱底邊長為時,箱子容積最大,最大容積是.
考點:導數在實際中的運用.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

設函數的定義域是,其中常數.
(1)若,求的過原點的切線方程.
(2)當時,求最大實數,使不等式恒成立.
(3)證明當時,對任何,有.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(1)若的極值點,求的極大值;
(2)求的范圍,使得恒成立.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數..
(1)設曲線處的切線為,點(1,0)到直線l的距離為,求a的值;
(2)若對于任意實數恒成立,試確定的取值范圍;
(3)當是否存在實數處的切線與y軸垂直?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設函數
(1)求的單調區間;
(2)當時,若方程上有兩個實數解,求實數的取值范圍;
(3)證明:當時,

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數.
(1)求函數的極小值;
(2)求函數的遞增區間.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

巳知函數,其中.
(1)若是函數的極值點,求的值;
(2)若在區間上單調遞增,求的取值范圍;
(3)記,求證:.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知
(1)求的單調增區間
(2)若內單調遞增,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知.
(1)求函數的最大值;
(2)設,證明:有最大值,且.

查看答案和解析>>

同步練習冊答案