已知兩定點E(-2,0),F(2,0),動點P滿足
,由點P向x軸作垂線段PQ,垂足為Q,點M滿足
,點M的軌跡為C.
(1)求曲線C的方程
(2)過點D(0,-2)作直線
與曲線C交于A、B兩點,點N滿足![]()
(O為原點),求四邊形OANB面積的最大值,并求此時的直線
的方程.
(1)
(2) 直線
的方程為![]()
解析試題分析:解(1)
動點P滿足
,
點P的軌跡是以E F為直徑的圓,
動點P的軌跡方程為
.設(shè)M(x,y)是曲線C上任一點,因為PM
x軸,
,
點P的坐標(biāo)為(x,2y),
點P在圓
上,
,
曲線C的方程是
.
(2)因為
,所以四邊形OANB為平行四邊形,
當(dāng)直線
的斜率不存在時顯然不符合題意;
當(dāng)直線
的斜率存在時,設(shè)直線
的方程為y=kx-2,
與橢圓交于
兩點,由
得![]()
,由
,得
,即![]()
![]()
![]()
10分
令![]()
![]()
,
,解得
,
滿足
,
,(當(dāng)且僅當(dāng)
時“=”成立)
,
當(dāng)
平行四邊形OANB面積的最大值為2.
所求直線
的方程為![]()
考點:圓錐曲線方程的求解和運用
點評:主要是考查了運用代數(shù)的方法來通過向量的數(shù)量積的公式,以及聯(lián)立方程組,結(jié)合韋達定理來求解,屬于中檔題。
科目:高中數(shù)學(xué) 來源: 題型:解答題
橢圓
與
軸負半軸交于點
,
為橢圓第一象限上的點,直線
交橢圓于另一點
,橢圓左焦點為
,連接
交
于點D。
(1)如果
,求橢圓的離心率;
(2)在(1)的條件下,若直線
的傾斜角為
且△ABC的面積為
,求橢圓的標(biāo)準(zhǔn)方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓
(a>b>0)的離心率為
,以原點為圓心,橢圓短半軸長半徑的圓與直線y=x+
相切.
(1)求橢圓的方程;
(2)設(shè)直線
與橢圓在
軸上方的一個交點為
,
是橢圓的右焦點,試探究以
為
直徑的圓與以橢圓長軸為直徑的圓的位置關(guān)系.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
平面直角坐標(biāo)系
和極坐標(biāo)系
的原點與極點重合,
軸的正半軸與極軸重合,單位長度相同。已知曲線
的極坐標(biāo)方程為
,曲線
的參數(shù)方程為![]()
,射線
,
,
與曲線
交于極點
以外的三點A,B,C.
(1)求證:
;
(2)當(dāng)
時,B,C兩點在曲線
上,求
與
的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的兩個焦點
,
,過
且與坐標(biāo)軸不平行的直線
與橢圓交于
兩點,如果
的周長等于8。
(1)求橢圓的方程;
(2)若過點
的直線
與橢圓交于不同兩點
,試問在
軸上是否存在定點
,使
恒為定值?若存在,求出點
的坐標(biāo)及定值;若不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知橢圓C:
+
=1(a>b>0)的左、右焦點分別為F
、F
,A是橢圓C上的一點,AF
⊥F
F
,O是坐標(biāo)原點,OB垂直AF
于B,且OF
=3OB.![]()
(Ⅰ)求橢圓C的離心率;
(Ⅱ)求t∈(0,b),使得命題“設(shè)圓x
+y
=t
上任意點M(x
,y
)處的切線交橢圓C于Q
、Q
兩點,那么OQ
⊥OQ
”成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知雙曲線
,點
、
分別為雙曲線
的左、右焦點,動點
在
軸上方.
(1)若點
的坐標(biāo)為
是雙曲線的一條漸近線上的點,求以
、
為焦點且經(jīng)過點
的橢圓的方程;
(2)若∠
,求△
的外接圓的方程;
(3)若在給定直線
上任取一點
,從點
向(2)中圓引一條切線,切點為
. 問是否存在一個定點
,恒有
?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的長軸長為
,焦點是
,點
到直線
的距離為
,過點
且傾斜角為銳角的直線
與橢圓交于
兩點,使得
.
(1)求橢圓的方程;(2)求直線
的方程.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com