平面直角坐標(biāo)系
和極坐標(biāo)系
的原點與極點重合,
軸的正半軸與極軸重合,單位長度相同。已知曲線
的極坐標(biāo)方程為
,曲線
的參數(shù)方程為![]()
,射線
,
,
與曲線
交于極點
以外的三點A,B,C.
(1)求證:
;
(2)當(dāng)
時,B,C兩點在曲線
上,求
與
的值。
(1)化成直角坐標(biāo)即可證明(2)![]()
解析試題分析:(1)因為曲線
的極坐標(biāo)方程為
,所以它的直角坐標(biāo)方程為
,為以(2,0)為圓心,以2為半徑的圓,因為射線
,
,
與曲線
交于極點
以外的三點A,B,C.所以![]()
(2)曲線
也是一個圓,將點B,C坐標(biāo)帶入圓的方程,可以解得
.
考點:本小題主要考查簡單曲線極坐標(biāo)方程和參數(shù)方程.
點評:本題考查點的極坐標(biāo)和直角坐標(biāo)的互化,能在極坐標(biāo)系中用極坐標(biāo)刻畫點的位置,體會在極坐標(biāo)系和平面直角坐標(biāo)系中刻畫點的位置的區(qū)別,能進行極坐標(biāo)和直角坐標(biāo)的互化
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,橢圓
的離心率為
,
軸被曲線
截得的線段長等于
的短軸長。
與
軸的交點為
,過坐標(biāo)原點
的直線
與
相交于點
,直線
分別與
相交于點
。![]()
(1)求
、
的方程;
(2)求證:
。
(3)記
的面積分別為
,若
,求
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系
中,動點
到兩點
,
的距離之和等于
,設(shè)點
的軌跡為曲線
,直線
過點
且與曲線
交于
,
兩點.
(1)求曲線
的軌跡方程;
(2)是否存在△
面積的最大值,若存在,求出△
的面積;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C:
的兩個焦點為F1、F2,點P在橢圓C上,且|PF1|=
,
|PF2|=
, PF1⊥F1F2.
(1)求橢圓C的方程;(6分)
(2)若直線L過圓x2+y2+4x-2y=0的圓心M交橢圓于A、B兩點,且A、B關(guān)于點M對稱,求直線L的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知兩定點E(-2,0),F(2,0),動點P滿足
,由點P向x軸作垂線段PQ,垂足為Q,點M滿足
,點M的軌跡為C.
(1)求曲線C的方程
(2)過點D(0,-2)作直線
與曲線C交于A、B兩點,點N滿足![]()
(O為原點),求四邊形OANB面積的最大值,并求此時的直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的長軸長為
,焦點是
,點
到直線
的距離為
,過點
且傾斜角為銳角的直線
與橢圓交于A、B兩點,使得|
=3|![]()
.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,橢圓
的右焦點
與拋物線
的焦點重合,過
作與
軸垂直的直線與橢圓交于
,而與拋物線交于
兩點,且
.![]()
(Ⅰ)求橢圓
的方程;
(Ⅱ)若過
的直線與橢圓
相交于兩點
和
,
設(shè)
為橢圓
上一點,且滿足
(
為坐標(biāo)原點),求實數(shù)
的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com