中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
(本題滿分16分)設
(1)請寫出的表達式(不需證明);
(2)求的極值
(3)設的最大值為,的最小值為,求的最小值.
(1);
(2)的極小值為;
(3)當時,取得最小值 
(1)分別列出可歸納出.
(2)因為,然后令,然后再根據極大(小)值的判斷方法可求出存在極小值,無極大值.
(3)根據二次函數的最值研究方法可得,,
從而可得,
然后再令,然后利用導數研究其單調性可知a-b在n=3時取得最小值.
(1)        ……………………………4分
(2)
 …………………………………5分





   --
0
  +


極小值

                                     …………7分
所以的極小值為…………8分
(3)

………………………………10分

在R上遞增



所以     ………………………………14分
所以當時,取得最小值……………………16分
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

.(本小題滿分12分)
已知函數f(x)=ln+mx2(m∈R)
(I)求函數f(x)的單調區間;
(II)若m=0,A(a,f(a))、B(b,f(b))是函數f(x)圖象上不同的兩點,且a>b>0, 為f(x)的導函數,求證:
(III)求證

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分12分)已知函數,,,其中.
(I)求函數的導函數的最小值;
(II)當時,求函數的單調區間及極值;
(III)若對任意的,函數滿足,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

函數的導函數的圖象大致是(     )
A.B.
C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本題滿分14分)
設函數
⑴當且函數在其定義域上為增函數時,求的取值范圍;
⑵若函數處取得極值,試用表示
⑶在⑵的條件下,討論函數的單調性。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

若函數有3個不同的零點,則實數的取值范圍是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本題滿分14分)
設函數,且,其中是自然對數的底數.
(1)求的關系;
(2)若在其定義域內為單調函數,求的取值范圍;
(3)設,若在上至少存在一點,使得成立,求實數
取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分15分)已知函數
(1)若函數上為增函數,求實數的取值范圍;
(2)當時,求上的最大值和最小值;
(3)當時,求證對任意大于1的正整數恒成立.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

設函數的圖像在處的切線與直線平行。
(1)求的直線;
(2)求函數在區間上的最小值;
(3)若,利用結論(2)證明:

查看答案和解析>>

同步練習冊答案