已知函數(shù)
.
(1)當(dāng)
時(shí),求函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)當(dāng)
時(shí),不等式
恒成立,求實(shí)數(shù)
的取值范圍.
(Ⅲ)求證:
(
,e是自然對數(shù)的底數(shù)).
提示:![]()
(Ⅰ)函數(shù)
的單調(diào)遞增區(qū)間為
,單調(diào)遞減區(qū)間為
;(Ⅱ)實(shí)數(shù)a的取值范圍是
;(Ⅲ)詳見解析.
解析試題分析:(Ⅰ)當(dāng)
時(shí),求函數(shù)
的單調(diào)區(qū)間,即判斷
在各個(gè)區(qū)間上的符號,只需對
求導(dǎo)即可;(Ⅱ)當(dāng)
時(shí),不等式
恒成立,即
恒成立,令
(
),只需求出
最大值,讓最大值小于等于零即可,可利用導(dǎo)數(shù)求最值,從而求出
的取值范圍;(Ⅲ)要證
(
成立,即證
,即證
,由(Ⅱ)可知當(dāng)
時(shí),
在
上恒成立,又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/da/4/xpfc92.png" style="vertical-align:middle;" />,從而證出.
試題解析:(Ⅰ)當(dāng)
時(shí),
(
),
(
),
由
解得
,由
解得
,故函數(shù)
的單調(diào)遞增區(qū)間為
,單調(diào)遞減區(qū)間為
;
(Ⅱ)因當(dāng)
時(shí),不等式
恒成立,即
恒成立,設(shè)
(
),只需
即可.由![]()
,
(。┊(dāng)
時(shí),
,當(dāng)
時(shí),
,函數(shù)
在
上單調(diào)遞減,故
成立;
(ⅱ)當(dāng)
時(shí),由
,因
,所以
,①若
,即
時(shí),在區(qū)間
上,
,則函數(shù)
在
上單調(diào)遞增,
在
上無最大值(或:當(dāng)
時(shí),
),此時(shí)不滿足條件;②若
,即
時(shí),函數(shù)
在
上單調(diào)遞減,在區(qū)間
上單調(diào)遞增,同樣
在
上無最大值,不滿足條件 ;
(ⅲ)當(dāng)
時(shí),由
,∵
,∴
,
∴
,故函數(shù)
在
上單調(diào)遞減,故
成立.
綜上所述,實(shí)數(shù)a的取值范圍是
.
(Ⅲ)據(jù)(Ⅱ)知當(dāng)
時(shí),
在![]()
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
是定義在
上的奇函數(shù),當(dāng)
時(shí),
(其中e是自然界對數(shù)的底,
)
(Ⅰ)設(shè)
,求證:當(dāng)
時(shí),
;
(Ⅱ)是否存在實(shí)數(shù)a,使得當(dāng)
時(shí),
的最小值是3 ?如果存在,求出實(shí)數(shù)a的值;如果不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
。
(Ⅰ)若
在
是增函數(shù),求b的取值范圍;
(Ⅱ)若
在
時(shí)取得極值,且
時(shí),
恒成立,求c的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(
).
(1)當(dāng)
時(shí),求函數(shù)
的單調(diào)區(qū)間;
(2)當(dāng)
時(shí),
取得極值.
① 若
,求函數(shù)
在
上的最小值;
② 求證:對任意
,都有
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)
為實(shí)數(shù),函數(shù)![]()
(Ⅰ)求
的單調(diào)區(qū)間與極值;
(Ⅱ)求證:當(dāng)
且
時(shí),![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)
的定義域?yàn)椋?,
).
(Ⅰ)求函數(shù)
在
上的最小值;
(Ⅱ)設(shè)函數(shù)
,如果
,且
,證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)m為實(shí)數(shù),函數(shù)f(x)=-
+2x+m,x∈R
(Ⅰ)求f(x)的單調(diào)區(qū)間與極值;
(Ⅱ)求證:當(dāng)m≤1且x>0時(shí),
>2
+2mx+1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知
的導(dǎo)函數(shù)
,且
,設(shè)
,
且
.
(Ⅰ)討論
在區(qū)間
上的單調(diào)性;
(Ⅱ)求證:
;
(Ⅲ)求證:
.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com