已知拋物線
與直線
相交于A、B 兩點.
(1)求證:
;
(2)當
的面積等于
時,求
的值.
科目:高中數學 來源: 題型:解答題
已知橢圓![]()
的左、右焦點分別為
、
,橢圓上的點
滿足
,且
的面積
.
(Ⅰ)求橢圓
的方程;
(Ⅱ)是否存在直線
,使
與橢圓
交于不同的兩點
、
,且線段
恰被直線
平分?若存在,求出
的斜率取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知圓
過定點
,圓心
在拋物線
上,
、
為圓
與
軸的交點.
(1)當圓心
是拋物線的頂點時,求拋物線準線被該圓截得的弦長.
(2)當圓心
在拋物線上運動時,
是否為一定值?請證明你的結論.
(3)當圓心
在拋物線上運動時,記
,
,求
的最大值,并求出此時圓
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓C:
的兩個焦點是F1(
c,0),F2(c,0)(c>0)。
(I)若直線
與橢圓C有公共點,求
的取值范圍;
(II)設E是(I)中直線與橢圓的一個公共點,求|EF1|+|EF2|取得最小值時,橢圓的方程;
(III)已知斜率為k(k≠0)的直線l與(II)中橢圓交于不同的兩點A,B,點Q滿足
且
,其中N為橢圓的下頂點,求直線l在y軸上截距的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知點
,
,直線AG,BG相交于點G,且它們的斜率之積是
.
(Ⅰ)求點G的軌跡
的方程;
(Ⅱ)圓
上有一個動點P,且P在x軸的上方,點
,直線PA交(Ⅰ)中的軌跡
于D,連接PB,CD.設直線PB,CD的斜率存在且分別為
,
,若
,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(13分) 已知橢圓C的中心在原點,離心率等于
,它的一個短軸端點點恰好是拋物線
的焦點。![]()
(1)求橢圓C的方程;
(2)已知P(2,3)、Q(2,-3)是橢圓上的兩點,A,B是橢圓上位于直線PQ兩側的動點,
①若直線AB的斜率為
,求四邊形APBQ面積的最大值;
②當A、B運動時,滿足
=
,試問直線AB的斜率是否為定值,請說明理由。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
設橢圓
:
的離心率為
,點
(
,0),
(0,
)原點
到直線
的距離為
。![]()
(1) 求橢圓
的方程;
(2) 設點
為(
,0),點
在橢圓
上(與
、
均不重合),點
在直線
上,若直線
的方程為
,且
,試求直線
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓C的中心在坐標原點,短軸長為4,且有一個焦點與拋物線
的焦點重合.
(Ⅰ)求橢圓C的方程;
(Ⅱ)已知經過定點M(2,0)且斜率不為0的直線
交橢圓C于A、B兩點,試問在x軸上是否另存在一個定點P使得
始終平分
?若存在,求出
點坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓
的中心在坐標原點,焦點在
軸上,橢圓
上的點到焦點距離的最大值為
,最小值為
.
(Ⅰ)求橢圓方程;
(Ⅱ)若直線
與橢圓交于不同的兩點
、
,且線段
的垂直平分線過定點
,求
的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com