中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
(本小題滿分12分)
已知數列滿足
(I)求的取值范圍;
(II)是否存在,使得?證明你的結論。
解:
(Ⅰ)由a2=<a1解得-3<a1<0或a1>3.………………………………1分
當-3<a1<0時,a2=<=-3,
a3a2=-a2=>0,a3a2,與題設矛盾.…………………………3分
a1>3時,先用數學歸納法證明an>3.
(1)當n=1時不等式成立.
(2)假設當nk時不等式成立,即ak>3,則
ak1=>=3,
即當nk+1時不等式仍成立.
根據(1)和(2),對任何n∈N*,都有an>3.………………………………6分
an+1an=-an=<0,∴an1ann∈N*
綜上,a1的取值范圍是(3,+∞).………………………………………………8分
(Ⅱ)假設存在使題設成立的正整數m,則
(am-3)(am+2-3)=(am+1-3)2即(am-3)·=(am+1-3)2
am-3=2am1,即am-3=,從而am=-3,這不可能.
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

(14分)已知等差數列{an}中,a2=8,前10項和S10=185.
(1)求通項an;
(2)若從數列{an}中依次取第2項、第4項、第8項…第2n項……按原來的順序組成一個新的數列{bn},求數列{bn}的前n項和Tn.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分14分)
已知數列是正數組成的數列,其前n項和為,對于一切均有與2的等差中項等于與2的等比中項.計算;并由此猜想的通項公式.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

對任意都有
(Ⅰ)求的值;
(Ⅱ)數列滿足:=+,數列是等差數列嗎?請給予證明;
(Ⅲ)令
試比較的大小.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

.(12分)
設等差數列的前項和為,已知
(1)求數列的通項公式;
(2)令,求數列的前10項和。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(14分)
已知是等差數列,其前n項和為Sn,已知
(1)求數列的通項公式;
(2)設,證明是等比數列,并求其前n項和Tn.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知的展開式的各項系數和為32,則展開式中的系數為(  )
A.5B.40 C.20D.10

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

.已知數列在直線上,若函數,函數的最小值     

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知為等差數列,++=105,=99,以表示的前項和,則使得達到最大值的
A.21B.20C.19D.18

查看答案和解析>>

同步練習冊答案