中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情
已知a,b,c,d都是實數,求證
a2+b2
+
c2+d2
(a-c)2+(b-d)2
分析:不妨設A(a,b),B(c,d),則|AB|=
(a-c)2+(b-d)2
.|OA|=
a2+b2
,|OB|=
c2+d2
.在△OAB中,由三角形三邊之間的關系知:|OA|+|OB|≥|AB|當且僅當O在線段AB上時,等號成立.即可證明.
解答:證明:不妨設A(a,b),B(c,d),則|AB|=
(a-c)2+(b-d)2

|OA|=
a2+b2
,|OB|=
c2+d2

在△OAB中,由三角形三邊之間的關系知:
|OA|+|OB|≥|AB|當且僅當O在線段AB上時,等號成立.
因此,
a2+b2
+
c2+d2
(a-c)2+(b-d)2
點評:本題考查了數形結合、三角形的三邊大小關系、兩點間的距離公式等基礎知識與基本技能方法,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

23、課本小結與復習的參考例題中,給大家分別用“綜合法”,“比較法”和“分析法”證明了不等式:已知a,b,c,d都是實數,且a2+b2=1,c2+d2=1,則|ac+bd|≤1.這就是著名的柯西(Cauchy.法國)不等式當n=2時的特例,即(ac+bd)2≤(a2+b2)(c2+d2),等號當且僅當ad=bc時成立.
請分別用中文語言和數學語言簡潔地敘述柯西不等式,并用一種方法加以證明.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知a,b,c,d都是正數,S=
a
a+b+d
+
b
b+c+a
+
c
c+d+a
+
d
d+a+c
,則S的取值范圍是
(1,2)
(1,2)

查看答案和解析>>

科目:高中數學 來源: 題型:

選修4-5;不等式選講
已知a,b,c,d都是實數,且a2+b2=1,c2+d2=1,求證:|ac+bd|≤1.

查看答案和解析>>

科目:高中數學 來源: 題型:

(附加題)已知 a、b、c、d都是正數,求證1<
a
a+b+d
+
b
b+c+a
+
c
c+d+b
+
d
d+a+c
<2

查看答案和解析>>

同步練習冊答案