如圖,四棱錐P
ABCD中,PA⊥底面ABCD,PA=2
,BC="CD=2," ∠ACB=∠ACD=
.![]()
(1)求證:BD⊥平面PAC;
(2)若側(cè)棱PC上的點(diǎn)F滿(mǎn)足PF=7FC,求三棱錐P
BDF的體積.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知正方形
的邊長(zhǎng)為
,點(diǎn)
分別在邊
上,
,現(xiàn)將△
沿線段
折起到△
位置,使得
.![]()
(1)求五棱錐
的體積;
(2)在線段
上是否存在一點(diǎn)
,使得
平面
?若存在,求
;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
一個(gè)空間幾何體的三視圖如下左圖所示,則該幾何體的表面積為( )![]()
| A.48 | B.48+8 | C.32+8 | D.80 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,四棱錐P-ABCD的底面是矩形,側(cè)面PAD丄底面ABCD,.
.![]()
(1)求證:平面PAB丄平面PCD
(2)如果AB=BC=2,PB=PC=
求四棱錐P-ABCD的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
四面體的六條棱中,有五條棱長(zhǎng)都等于a.
(1)求該四面體的體積的最大值;
(2)當(dāng)四面體的體積最大時(shí),求其表面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知多面體
中, 四邊形
為矩形,
,
,平面
平面
,
、
分別為
、
的中點(diǎn),且
,
.![]()
(1)求證:
平面
;
(2)求證:
平面
;
(3)設(shè)平面
將幾何體
分成的兩個(gè)錐體的體積分別為
,
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在四棱錐P-ABCD中,平面PAD⊥平面ABCD,AB∥DC,△PAD是等邊三角形,已知AD=4,BD=4
,AB=2CD=8.![]()
(1)設(shè)M是PC上的一點(diǎn),證明:平面MBD⊥平面PAD;
(2)當(dāng)M點(diǎn)位于線段PC什么位置時(shí),PA∥平面MBD?
(3)求四棱錐P-ABCD的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在體積為
的圓錐
中,已知
的直徑
,
是
的中點(diǎn),
是弦
的中點(diǎn).![]()
(1)指出二面角
的平面角,并求出它的大。
(2)求異面直線
與
所成的角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,儲(chǔ)油灌的表面積
為定值,它的上部是半球,下部是圓柱,半球的半徑等于圓柱底面半徑.![]()
⑴試用半徑
表示出儲(chǔ)油灌的容積
,并寫(xiě)出
的范圍.
⑵當(dāng)圓柱高
與半徑
的比為多少時(shí),儲(chǔ)油灌的容積
最大?
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com