中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

已知函數R,且.

(1)當時,若函數存在單調遞減區間,求的取值范圍;

(2)當時,討論函數的零點個數.

解析:(1)當時,函數,其定義域是

.                               

函數存在單調遞減區間,

上有無窮多個解.

∴關于的不等式上有無窮多個解.      

① 當時,函數的圖象為開口向上的拋物線,

  關于的不等式上總有無窮多個解.      

② 當時,函數的圖象為開口向下的拋物線,其對稱軸為

.要使關于的不等式上有無窮多個解.

必須

解得,此時.                                     

綜上所述,的取值范圍為.                       

另解:分離系數:不等式上有無窮多個解,

則關于的不等式上有無窮多個解,

,即,而.                                

的取值范圍為.                             

(2)當時,函數,其定義域是

.

,得,即,   

,                                               

,則,   

                       

時,;當1時,.

∴函數在區間上單調遞增,在區間上單調遞減.                 

∴當時,函數取得最大值,其值為.

① 當時,,若, 則, 即.

此時,函數軸只有一個交點,故函數只有一個零點;              

② 當時,,又,

,

函數軸有兩個交點,故函數有兩個零點;                       

③ 當時,,函數軸沒有交點,故函數沒有零點.

 

 

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=log
1
2
[ax2-(a-1)x-2]
的值域為R,且f(x)在(2,5)上是減函數,則實數a的取值范圍是(  )
A、a>0
B、a≥0
C、0≤a≤2
D、-
9
2
≤a≤-4

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•眉山一模)已知函數f(x)=ax-1-lnx(a∈R).
(Ⅰ)判斷函數f(x)的單調性;
(Ⅱ)若不等式f(x)<0在區間[
1
2
,2]
上恒成立,求實數a的取值范圍;
(Ⅲ)比較(1+1)(1+
1
3
)(1+
1
7
)…(1+
1
2n-1
)與e
3e2
的大小(n∈N*且n≥2,e是自然對數的底數).

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數 f(x)=
1
2
x2-mlnx+(m-1)x
,m∈R.
(1)當 m=2時,求函數 f(x)的最小值;
(2)當 m≤0時,討論函數 f(x)的單調性;
(3)求證:當 m=-2時,對任意的 x1,x2∈(0,+∞),且x1≠x2,有
f(x2)-f(x1)
x2-x1
>-1

查看答案和解析>>

科目:高中數學 來源:2010-2011學年寧夏高三第一次月考文科數學卷 題型:解答題

(本小題滿分12分)

 已知函數R).

(Ⅰ)若a=1,函數的圖象能否總在直線的下方?說明理由;

 

(Ⅱ)若函數在(0,2)上是增函數,求a的取值范圍;

 

(Ⅲ)設為方程的三個根,且,  求證:

 

查看答案和解析>>

同步練習冊答案