中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

已知函數為自然對數的底數).
(Ⅰ)求曲線在點處的切線方程;
(Ⅱ)求函數的單調區間;
(Ⅲ)若存在使不等式成立,求實數的取值范圍.

(Ⅰ);(Ⅱ)單調遞減區間為,單調遞增區間為
(Ⅲ)

解析試題分析:(Ⅰ)將代入原函數求,即得切點坐標,先將原函數求導再將代入導函數求,根據導數的幾何意義可知即為切線在點處切線的斜率,根據直線方程的點斜式即可求得切線方程。(Ⅱ)先求導數,及其零點,判斷導數符號,即可得原函數增減區間。(Ⅲ)時可將變形為,若存在使不等式成立,則只需大于上的最小值即可。即將不等式問題轉化為求函數最值問題
試題解析:解:(Ⅰ).                      1分
,                                2分
所以曲線在點處的切線方程為.       3分
(Ⅱ).
,即,解得.                     5分
時,時,
此時的單調遞減區間為,單調遞增區間為.       7分
(Ⅲ)由題意知使成立,即使成立;8分
所以                   9分

所以上單調遞減,在上單調遞增,
,                                   12分
所以.                                     13分
考點:1導數、導數的幾何意義;2利用導數研究函數性質.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知函數f(x)=x2xsin x+cos x.
(1)若曲線yf(x)在點(af(a))處與直線yb相切,求ab的值;
(2)若曲線yf(x)與直線yb有兩個不同交點,求b的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(1)已知函數f(x)=ex-1-tx,?x0∈R,使f(x0)≤0,求實數t的取值范圍;
(2)證明:<ln,其中0<a<b;
(3)設[x]表示不超過x的最大整數,證明:[ln(1+n)]≤[1++ +]≤1+[lnn](n∈N*).

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(Ⅰ)若函數上為增函數,求實數的取值范圍;
(Ⅱ)當時,證明: .

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,且是函數的一個極小值點.
(Ⅰ)求實數的值;
(Ⅱ)求在區間上的最大值和最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數.
(1)當時,求函數的單調區間;
(2)若函數有兩個極值點,且,求證:;
(Ⅲ)設,對于任意時,總存在,使成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知a,b為常數,a¹0,函數
(1)若a=2,b=1,求在(0,+∞)內的極值;
(2)①若a>0,b>0,求證:在區間[1,2]上是增函數;
②若,且在區間[1,2]上是增函數,求由所有點形成的平面區域的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數.
(1)當時,求函數的單調區間;
(2)若函數在區間上為減函數,求實數的取值范圍;
(3)當時,不等式恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題13分) 已知函數為自然對數的底數)。
(1)若,求函數的單調區間;
(2)是否存在實數,使函數上是單調增函數?若存在,求出的值;若不存在,請說明理由。恒成立,則,又

查看答案和解析>>

同步練習冊答案