已知y=f(x)是定義在R上的奇函數(shù),當(dāng)x≤0時,f(x)=2x+x2.
(1)求x>0時,f(x)的解析式;
(2)若關(guān)于x的方程f(x)=2a2+a有三個不同的解,求a的取值范圍.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知
.
(1)若a=0時,求函數(shù)
在點(diǎn)(1,
)處的切線方程;
(2)若函數(shù)
在[1,2]上是減函數(shù),求實(shí)數(shù)a的取值范圍;
(3)令
是否存在實(shí)數(shù)a,當(dāng)
是自然對數(shù)的底)時,函數(shù)
的最小值是3,若存在,求出a的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
,
(其中
).
(Ⅰ)求函數(shù)
的極值;
(Ⅱ)若函數(shù)
在區(qū)間
內(nèi)有兩個零點(diǎn),求正實(shí)數(shù)a的取值范圍;(Ⅲ)求證:當(dāng)
時,
.(說明:e是自然對數(shù)的底數(shù),e=2.71828…)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)
表示
導(dǎo)函數(shù)。
(1)求函數(shù)
的單調(diào)遞增區(qū)間;
(2)當(dāng)
為奇數(shù)時,設(shè)
,數(shù)列
的前
項(xiàng)和為
,證明不等式
對一切正整數(shù)
均成立,并比較
與
的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知
,函數(shù)
.
(1)若函數(shù)
在區(qū)間
內(nèi)是減函數(shù),求實(shí)數(shù)
的取值范圍;
(2)求函數(shù)
在區(qū)間
上的最小值
;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
對于在區(qū)間
上有意義的兩個函數(shù)
,如果對于任意的
,都有
則稱
在區(qū)間
上是“接近的”兩個函數(shù),否則稱它們在區(qū)間
上是“非接近的”兩個函數(shù),F(xiàn)有兩個函數(shù)
給定一個區(qū)間
。
(1)若
在區(qū)間
有意義,求實(shí)數(shù)
的取值范圍;
(2)討論
在區(qū)間
上是否是“接近的”。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)f(x)="|2x-1|+|2x-3|" , x∈R.
(Ⅰ)解不等式f(x)≤5;
(Ⅱ)若
的定義域?yàn)镽,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)![]()
(Ⅰ)當(dāng)
時,求函數(shù)
的極值;
(Ⅱ)當(dāng)
時,討論函數(shù)
的單調(diào)性.
(Ⅲ)若對任意
及任意
,恒有
成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com