已知函數(shù)
,![]()
(1)在如圖給定的直角坐標(biāo)系內(nèi)畫(huà)出
的圖象;
(2)寫(xiě)出
的單調(diào)遞增區(qū)間.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)
,其中
為正實(shí)數(shù).
(1)當(dāng)
時(shí),求
的極值點(diǎn);
(2)若
為
上的單調(diào)函數(shù),求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
.
(1)求函數(shù)
的單調(diào)區(qū)間
(2)函數(shù)
的圖象在
處切線的斜率為
若函數(shù)
在區(qū)間(1,3)上不是單調(diào)函數(shù),求m的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)
是定義在
上的函數(shù),當(dāng)
,且
時(shí),有
.
(1)證明
是奇函數(shù);
(2)當(dāng)
時(shí),
(a為實(shí)數(shù)). 則當(dāng)
時(shí),求
的解析式;
(3)在(2)的條件下,當(dāng)
時(shí),試判斷
在
上的單調(diào)性,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知
,函數(shù)
.
(1)若
,寫(xiě)出函數(shù)
的單調(diào)遞增區(qū)間(不必證明);
(2)若
,當(dāng)
時(shí),求函數(shù)
在區(qū)間
上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)![]()
(1)求
,并求數(shù)列
的通項(xiàng)公式.
(2)已知函數(shù)
在
上為減函數(shù),設(shè)數(shù)列
的前
的和為
,
求證:![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù)![]()
(I)討論
的單調(diào)性;
(II)若
有兩個(gè)極值點(diǎn)
和
,記過(guò)點(diǎn)
的直線的斜率為
,問(wèn):是否存在
,使得
若存在,求出
的值,若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
.
(Ⅰ)作出函數(shù)
的圖像,并根據(jù)圖像寫(xiě)出函數(shù)
的單調(diào)區(qū)間;以及在各單調(diào)區(qū)間上的增減性.
(Ⅱ)求函數(shù)
當(dāng)
時(shí)的最大值與最小值.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com