(本題滿分12分)
已知函數(shù)
(
).
(1)當(dāng)
時,求函數(shù)
在
上的最大值和最小值;
(2)當(dāng)函數(shù)
在
單調(diào)時,求
的取值范圍;
(3)求函數(shù)
既有極大值又有極小值的充要條件。
2, 2-ln2 ,
, ![]()
(1)
時,
,
函數(shù)
在區(qū)間
僅有極大值點(diǎn)
,故這個極大值點(diǎn)也是最大值點(diǎn),
故函數(shù)在
最大值是
,
又
,故
,
故函數(shù)在
上的最小值為
。(4分)
(2)
,令
,則
,
則函數(shù)在
遞減,在
遞增,由
,
,
,故函數(shù)
在
的值域?yàn)?img border=0 width=64 height=45 src="http://thumb.zyjl.cn/pic1/1899/sx/163/101963.gif" >。
若
在
恒成立,即
在
恒成立,
只要
,若要
在在
恒成立,即
在
恒成立,
只要
。即
的取值范圍是
。(8分)
(3)若
既有極大值又有極小值,則首先必須
有兩個不同正根
,
即
有兩個不同正根。
故
應(yīng)滿足
,∴當(dāng)
時,
有兩個不等的正根,不妨設(shè)
,
由![]()
![]()
![]()
知:
時
,
時
,
時
,
∴當(dāng)
時
既有極大值
又有極小值
.
反之,當(dāng)
時,
有兩個不相等的正根,故函數(shù)
既有極大值又有極小值的充要條件
。 (12分)
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
| π | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分12分)已知數(shù)列
是首項(xiàng)為
,公比
的等比數(shù)列,,
設(shè)
,數(shù)列
.
(1)求數(shù)列
的通項(xiàng)公式;(2)求數(shù)列
的前n項(xiàng)和Sn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年上海市金山區(qū)高三上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分12分,第1小題6分,第2小題6分)
已知集合A={x| | x–a | < 2,xÎR
},B={x|
<1,xÎR }.
(1) 求A、B;
(2) 若
,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年安徽省高三10月月考理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分12分)
設(shè)函數(shù)
(
,
為常數(shù)),且方程
有兩個實(shí)根為
.
(1)求
的解析式;
(2)證明:曲線
的圖像是一個中心對稱圖形,并求其對稱中心.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年重慶市高三第二次月考文科數(shù)學(xué) 題型:解答題
(本題滿分12分,(Ⅰ)小問4分,(Ⅱ)小問6分,(Ⅲ)小問2分.)
如圖所示,直二面角
中,四邊形
是邊長為
的正方形,
,
為
上的點(diǎn),且
⊥平面![]()
(Ⅰ)求證:
⊥平面![]()
(Ⅱ)求二面角
的大小;
(Ⅲ)求點(diǎn)
到平面
的距離.
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com