中文字幕人妻色偷偷久久-精品久久久久成人码免费动漫-久久精品国产清自在天天线-国产成人精品免高潮在线观看

精英家教網 > 高中數學 > 題目詳情

在調查男女同學是否喜愛籃球的情況中,已知男同學喜愛籃球的為28人,不喜愛籃球的也是28人,而女同學喜愛籃球的為28人,不喜愛籃球的為56人,
(1)根據以上數據建立一個2×2的列聯表;
(2)試判斷是否喜愛籃球與性別有關?

(1) 列聯表如下:

 
喜愛籃球
不喜愛籃球
合 計
男同學
28
28
56
女同學
28
56
84
合計
56
84
140
(2) 有

解析解:(1)2×2列聯表如下:

 
喜愛籃球
不喜愛籃球
合 計
男同學
28
28
56
女同學
28
56
84
合計
56
84
140
(2)計算
χ2≈3.889.
因為χ2>3.841,故我們有95%的把握認為是否喜愛籃球與性別有關.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

為調查民營企業的經營狀況,某統計機構用分層抽樣的方法從A、B、C三個城市中,抽取若干個民營企業組成樣本進行深入研究,有關數據見下表:(單位:個)

城市
 
民營企業數量
 
抽取數量
 
A
 

 
4
 
B
 
28
 

 
C
 
84
 
6
 
 
(1)求的值;
(2)若從城市A與B抽取的民營企業中再隨機選2個進行跟蹤式調研,求這2個都來自城市A的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

從天氣網查詢到邯鄲歷史天氣統計(2011-01-01到2014-03-01)資料如下:

自2011-01-01到2014-03-01,邯鄲共出現:多云天,晴天,雨天,雪天,陰天,其它2天,合計天數為:天.
本市朱先生在雨雪天的情況下,分別以的概率乘公交或打出租的方式上班(每天一次,且交通方式僅選一種),每天交通費用相應為元或元;在非雨雪天的情況下,他以的概率騎自行車上班,每天交通費用元;另外以的概率打出租上班,每天交通費用元.(以頻率代替概率,保留兩位小數. 參考數據:
(1)求他某天打出租上班的概率;
(2)將他每天上班所需的費用記為(單位:元),求的分布列及數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

某校高三年級一次數學考試后,為了解學生的數學學習情況,隨機抽取名學生的數學成績,制成表所示的頻率分布表.

組號
分組
頻數
頻率
第一組



第二組



第三組



第四組



第五組



合計


(1)求的值;
(2)若從第三、四、五組中用分層抽樣方法抽取名學生,并在這名學生中隨機抽取名學生與張老師面談,求第三組中至少有名學生與張老師面談的概率

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

關于某設備的使用年限和所支出的維修費用(萬元),有如下的統計資料:

x
2
3
4
5
6
y
2.2
3.8
5.5
6.5
7.0
(1)如由資料可知呈線形相關關系.試求:線形回歸方程;(
(2)估計使用年限為10年時,維修費用是多少?

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

想象一下一個人從出生到死亡,在每個生日都測量身高,并作出這些數據的散點圖,這些點將不會落在一條直線上,但在一段時間內的增長數據有時可以用線性回歸來分析,下表是一位母親給兒子做的成長記錄:

年齡/周歲
3
4
5
6
7
8
9
身高/cm
91.8
97.6
104.2
110.9
115.6
122.0
128.5
 
年齡/周歲
10
11
12
13
14
15
16
身高/cm
134.2
140.8
147.6
154.2
160.9
167.5
173.0
(1)年齡(解釋變量)和身高(預報變量)之間具有怎樣的相關關系?
(2)如果年齡相差5歲,則身高有多大差異(3~16歲之間)?
(3)如果身高相差20 cm,其年齡相差多少(3~16歲之間)?
(4)計算殘差,說明該函數模型是否能夠較好地反映年齡與身高的關系,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

對196個接受心臟搭橋手術的病人和196個接受血管清障手術的病人進行了3年的跟蹤研究,調查他們是否又發作過心臟病,調查結果如下所示:

 
又發作過心臟病
未發作過心臟病
合計
心臟搭橋手術
39
157
196
血管清障手術
29
167
196
合計
68
324
392
比較這兩種手術對病人又發作心臟病的影響有沒有差別.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

某興趣小組欲研究晝夜溫差大小與患感冒人數多少之間的關系,他們分別到氣象局與某醫院抄錄了1至6月份每月10號的晝夜溫差情況與因患感冒而就診的人數,得到如下資料:

該興趣小組確定的研究方案是:先從這六組數據中選取2組,用剩下的4組數據求線性回歸方程,再用被選取的2組數據進行檢驗。
(1)求選取的2組數據恰好是相鄰兩個月的概率;
(2)若選取的是1月與6月的兩組數據,請根據2至5月份的數據,求出y關于x的線
性回歸方程
(3)若由線性回歸方程得到的估計數據與所選出的檢驗數據的誤差均不超過2人,則認為得到的線性回歸方程是理想的,試問該小組所得線性回歸方程是否理想?

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

為緩解某路段交通壓力,計劃將該路段實施“交通限行”.在該路段隨機抽查了50人,了解公眾對“該路段限行”的態度,將調查情況進行整理,制成下表:

年齡
(歲)
[15,25)
[25,35)
[35,45)
[45,55)
[55,65)
[65,75]
頻 數
5
10
15
10
5
5
贊成
人數
4
8
9
6
4
3
(1)作出被調查人員年齡的頻率分布直方圖.
(2)若從年齡在[15,25),[25,35)的被調查者中各隨機選取兩人進行追蹤調查,記選中的4人中不贊成“交通限行”的人數為ξ,求隨機變量ξ的分布列和數學期望.

查看答案和解析>>

同步練習冊答案